The Effect of Magnetic Field and Different Levels of Irrigation Water Salinity on Emitters Discharge

Document Type : Original Article

Authors

1 Assistant Prof, Department of Agricultural Engineering Research, Hamedan Agricultural and Natural Resources Research and Education Center, Agricultural Research, Education and Extension Organization, Hamedan, Iran.

2 MSc Student of Irrigation and Drainage, University of Tehran, Iran, Email: mpourgholam6@ut.ac.ir Assistant Professor, Water Engineering Department, Sari Agricultural Sciences and Natural Resources University

3 Assistant professor, Water Engineering Department, Sari Agricultural Sciences and Natural Resources University, Sari, Iran.

Abstract

Clogging of emitters is one of the problems of trickle irrigation with saline water. This study was carried out with the purpose of investigating emitters clogging in trickle irrigation using magnetized water under different salinity level. In this study two treatments of magnetized water and non-magnetized water considered were as main factors (variables) and three levels of saline water including waters with saline of 0.57, 5 and 10 dS/m and three distance including the first of lateral, middle and the end of lateral were as sub-factors. The experiment was laid out with split-split plot in a complete randomized block design with three replications at Babolsar city in 2016. In order to assess the clogging of emitters, the variations of emitter discharges and chemical analysis of water was measured and analyzed. The results showed that the effect of magnetized water on average discharge of emitters and uniformity coefficient was significant (at P≤0.05). At the end of the irrigation season, the average discharge of emitters used for the magnetized water was 7.3% higher than the non-magnetized water. Also, the uniformity coefficient of emitters used for magnetized water was 7.9% higher than non-magnetized water. For saline water of 10 dS/m, the average discharge of emitters was 4.02 L/hr at the first irrigation period and reached 3.69 L/hr at the final irrigation period, while for magnetized water, it was 4.05 L/hr at the first irrigation period and reached 3.85 L/hr at the final irrigation period. According to this research, the using magnetized water is recommended in order to decrease the emitter clogging and increase the water uniformity in the field.

Keywords


جعفری جهقی، م. ع.، ک. تحویلداری و ا. ع. شریف. 1394. حذف سختی از پساب و آب با استفاده از میدان مغناطیسی. دومین کنفرانس بین المللی توسعه پایدار، راهکارها و چالش‌ها با محوریت کشاورزی، منابع طبیعی، محیط زیست و گردشگری، 4 تا 6  اسفند، تبریز.
زمانیان، م و ر. فتاحی. 1393. مقایسه خصوصیات کیفی آب و رسوبات شیمیایی عامل انسداد قطره­چکان­ها در سامانه های آبیاری قطره‌ای کشور، فصلنامه علمی پژوهشی مهندسی آبیاری و آب، جلد 4، شماره 15، ص 75-64 .
عبدالصالحی، ا و ح. بانژاد. 1387. استفاده از میدان مغناطیسی با هدف جلوگیری از گرفتگی قطره­چکان­ها در سیستم آبیاری تحت فشار به­منظور ارتقا بهره­وری و مدیریت تخصیص بهینه منابع آب، ص 9-1. دومین همایش ملی مدیریت شبکه­هایآبیاری و زهکشی. 10-8 بهمن، دانشگاه شهید چمران اهواز، اهواز.
عرب، ع. 1388. تاثیر آب مغناطیسی بر گرفتگی و یکنواختی پخش آب قطره‌چکان‌ها در آبیاری قطره‌ای. پایان‌نامه کارشناسی ارشد آبیاری و زهکشی. دانشکده مهندسی کشاورزی، دانشگاه صنعتی اصفهان.
علیزاده ا. 1389. آبیاری قطره­ای (اصول و عملیات). انتشارات آستان قدس رضوی، چاپ دوم، 494 ص.
علیزاده، ا. 1392. زهکشی جدید، انتشارات دانشگاه فردوسی مشهد، 532 ص.
قدمی فیروزآبادی، ع.، م. خوش روش، پ. شیرازی و ح. زارع ابیانه. 1395. اثر آبیاری با آب مغناطیسی بر عملکرد دانه و بیوماس گیاه سویا رقم DPX در شرایط کم آبیاری و شوری آب. نشریه پژوهش آب در کشاورزی، جلد 30، شماره 1، ص 143-131.
کیانی، ع.، ا. هزارجریبی، ط. دهقان و م. خوش روش. 1394. تأثیر آب مغناطیسی و شوری آب بر گرفتگی قطره­چکان­ها در آبیاری قطره­ای. نشریه آب و خاک (علوم و صنایع کشاورزی)، جلد 29، شماره 1، ص 58-48.
Aali, K. A., A. Liaghat and H. Dehghanisanij. 2009. The effect of acidification and magnetic field on emitter clogging under saline water application. Journal of Agricultural Science, 1(1): 132-141.
Benham, B. and B. Ross. 2002. Filtration, treatment, and maintenance consideration for micro-irrigation system. Virginia Cooperative Extension Publication, Available online at: http://www.ext.vt.edu/pubs/bse/442-757.pdf7.
Capra, A. and B. Scicolone. 2004. Emitter and filter tests for wastewater reuse by drip irrigation. Agricultural Water Management, 68: 135-149.
Duran-Ras, M., P. Puing-Bargues, G. Arbat, J. Barragan and F. Ramirez. 2009. Effect of filter, emitter and location on clogging when using effluents. Agricultural water management, 96: 67-79.
Higashitani, K., A. Kage, S. Katamura, K. Imai and S. Hatade. 1993. Effects of a magnetic field on the formation of CaCO3 particles. Journal of Colloid and Interface Science, 156: 90-95.
Kronenberg, K. J. 1985. Experimental evidence for effects of magnetic fields on moving water. IEEE Transactions on Magnetics, 21: 2059-2061.
Pang, X. F. and B. Deng. 2008. The changes of macroscopic features and microscopic structureof water under influence of magnetic field. Physical B, 403: 3571-3577.
Puig‐Bargués, J., G. Arbat, M. Elbana, M. DuranRos, J. Barragán, F. Ramirez de Cartagena and F. R. Lamm. 2010. Effect of flushing frequency on emitter clogging in micro irrigation with effluents. Agricultural Water Management, 97(6): 883-891.
Ravina, I., E. Paz, Z. Sofer, A. Marcu, A. Shisha and G. Sagi. 1992. Control of emitter clogging in dripIrrigation with reclaimed wastewater. Irrigation Science, 13: 129-139.
Saliha, B. B. 2005. Bio efficacy testing of GMX online magnetic water conditioner in grapes var.muscat. Tamil Nadu agricultural university. Project Completion Project.
Zamaniyan, M. R., S. Fatahi. S. Boroomand-nasab, K. Shamohammadi and K. Parvanak. 2013. Evaluation of emitters and water quality in trickle irrigation systems under Iranian conditions. International Journal of Agricultural and crop sciences, 15: 1632-1637