بررسی ریسک آلودگی آبخوان دشت سلماس با استفاده از روش DRASTIC-L بهینه‌شده با الگوریتم ژنتیکی

نویسندگان

1 گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز، شهر تبریز، ایران

2 گروه علوم زمین، دانشکده علوم طبیعی، دانشگاه تبریز، شهر تبریز

3 گروه عمران آب دانشگاه مراغه

چکیده

نیترات یکی از شایع­ترین آلاینده­های منابع آبی است که از کودهای شیمیایی، آفت­کش­ها و یا فاضلاب­های خانگی و صنعتی منشا می­گیرد و موجب آلودگی آب­های زیرزمینی می­شود. آبخوان دشت سلماس به علت رونق کشاورزی در منطقه در معرض خطر آلودگی نیترات قرار دارد. لذا ارزیابی ریسک آلودگی این آبخوان نسبت به آلاینده نیترات و تعیین مناطق در معرض خطر امری ضروری می­باشد. در این پژوهش ریسک آلودگی آبخوان دشت سلماس با استفاده از روش DRASTIC-L و سرعت جریان آب زیرزمینی مورد بررسی قرار گرفته است. در این روش بعد از تهیه هشت لایه رستری روش DRASTIC-L و سپس بهینه­سازی وزن­های پارامترها با استفاده از الگوریتم ژنتیکی، نقشه آسیب­پذیری آبخوان نسبت به آلاینده نیترات بدست آمد. در نهایت نقشه ریسک آلودگی نیترات از حاصل­ضرب آسیب­پذیری آبخوان در سرعت جریان آب زیرزمینی حاصل شد. نتایج نشان داد که ریسک آلودگی آبخوان نسبت به آلاینده نیترات در قسمت­های غربی آبخوان بالا می­باشد و در قسمت­های شرقی و مرکزی آبخوان، ریسک آلودگی خیلی کم است.

کلیدواژه‌ها


عنوان مقاله [English]

Investigation of Contamination Risk using Optimized DRASTIC-L Method with Genetic Algorithm in Salmas Plain Aquifer

نویسندگان [English]

  • Maryam Gharekhani 1
  • Ata Allah Nadiri 1
  • Asghar Asghari Moghaddam 2
  • Sina Sadeghfam 3
1 Department of geology, Faculty of natural science, University of Tabriz
2 Faculty of Natural Sciences, University of Tabriz, Tabriz city
چکیده [English]

Nitrate is one of the most common contaminants that originates from fertilizers, pesticides or domestic and industrial wastewater. This non-point source contaminant exposes the Salmas plain aquifer to groundwater pollution due to extensive agricultural activity. Therefore, it is necessary to assess the contamination risk of aquifer to high nitrate concentration and identify the high-risk areas in this aquifer. In this research, the contamination risk of Salmas plain aquifer was investigated using DRASTIC-L framework and groundwater velocity. For this purpose, after constructing of DRASTIC-L framework, the weights of eight layers of the framework optimized by genetic algorithm to obtain the aquifer vulnerability map to nitrate contaminant. Finally, the contamination risk map to nitrate was achieved from multiplying the aquifer vulnerability and groundwater velocity. The results showed that against to the eastern and central parts of the aquifer, the contamination risk of the aquifer is high in the western part of the aquifer.

کلیدواژه‌ها [English]

  • Salmas aquifer
  • vulnerability
  • Genetic Algorithm
  • Contamination risk
  • Nitrate
سرچشمه، ب. و ش. شاه­محمدی کلالق. 1395. ارزیابی آسیب­پذیری آلودگی آبخوان دشت سلماس با مدل دراستیک و سیستم اطلاعات جغرافیایی. نشریه دانش آب و خاک، دوره 26، شماره2/4، ص 67-55.
قره­خانی، م.، ع.ا. ندیری و ا. اصغری مقدم. 1398. تعیین پتانسیل آلودگی آبخوان دشت سلماس. اولین کنفرانس بین­المللی و چهارمین کنفرانس ملی صیانت از منابع طبیعی و محیط­زیست، دانشگاه محقق اردبیلی.
گنجی خرم دل، ن. و م. شمس. 1397. ارزیابی آسیب­پذیری به آلودگی نیترات به آبخوان دشت الشتر با استفاده از مدل­های دراستیک و سینتکس. نشریه مهندسی آبیاری و آب ایران، دوره نهم، شماره 2، ص 64-50.
مهندسین مشاور آب و توسعه پایدار. 1393. گزارش بیلان منابع آب محدوده مطالعاتی سلماس (3001)، 94 ص.
یزدانی، و. و ح. منصوریان. 1398. ارزیابی آسیب­پذیری آبخوان دشت قزوین و تحلیل حساسیت حذف پارامترها با بکارگیری GIS. نشریه مهندسی آبیاری و آب ایران، دوره 10، شماره 2، ص 146-128.
 
Aller, L., T. Bennett, J. H. Lehr, R. J. Pretty and G. Hackett. 1987. DRASTIC: A Standardized System for Evaluating Ground Water Pollution Potential Using Hydrogeologic Settings. US Environmental Protection Agency, Ada, Oklahoma (EPA-600/2-87-035).
Baalousha, H. M. 2011. Mapping groundwater contamination risk using GIS and groundwater modelling, A case study from the Gaza Strip, Palestine. Arab J Geosci., 4: 483–94.
Bai, L., Y. Wang and F. Meng. 2012. Application of DRASTIC and extension theory in the groundwater vulnerability evaluation. Water and Environment journal, 26(3): 381–391.
Brookes, C. J. 2001. A genetic algorithm for designing optimal patch configurations in GIS. International Journal of Geographical Information Science, 15(6): 539-559.
Huan, H., B. T. Zhang, H. Kong, M. Li, W. Wang, B. Xi and G. Wang. 2018. Comprehensive assessment of groundwater pollution risk based on HVF model: A case study in Jilin City of northeast China. Science of the Total Environment, 628–629: 1518–1530.
Jafari S. M. and M. R. Nikoo. 2016. Groundwater risk assessment based on optimization framework using DRASTIC method. Arab J Geosci., 9: 742.
Nadiri A. A., S. Sadeghfam, M. Gharekhani, R. Khatibi and E.Akbari. 2018c. introducing the risk aggregation problem to aquifers exposed to impacts of anthropogenic and geogenic origins on a modular basis using 'risk cells'. Journal of Environmental Management, 217: 654–667.
Nadiri, A. A., F. Sadeghi Aghdam, R. Khatibi and A. Asghari Moghaddam. 2018b. the problem of identifying arsenic anomalies in the basin of Sahand dam through risk-based ‘soft modelling’. Science of the Total Environment, 613: 693–706.
Nadiri, A. A., M. Gharekhani, R. Khatibi, S. Sadeghfam and A. Asghari Moghaddam. 2017. Groundwater vulnerability indices conditioned by Supervised Intelligence Committee Machine (SICM). Science of the Total Environment, 574: 691–706.
Neshat, A., B. Pradhan and S. Javadi. 2015. Risk assessment of groundwater pollution using Monte Carlo approach in an agricultural region: An example from Kerman Plain, Iran. Journal of Computers, Environment and Urban Systems, 50: 66–73.
Nobre, R. C. M., O. C. Rotunno, W. J. Mansur, M. M. M. Nobre and C. A. N. Cosenza. 2007. Groundwater vulnerability and risk mapping using GIS, modeling and a fuzzy logic tool. J Contam Hydrol., 94: 277–92.
Sajedi-Hosseini, F., A. Malekian, B. Choubin, O. Rahmati, S. Cipullo, F. Coulon and B. Pradhan. 2018. A novel machine learning-based approach for the risk assessment of nitrate groundwater contamination. Science of the Total Environment, 644: 954–962.
Wang, J., J. He and H. Chen. 2012. Assessment of groundwater contamination risk using hazard quantification, a modified DRASTIC model and groundwater value, Beijing Plain, China. Science of the Total Environment, 432: 216-226.