بررسی کارایی مدل‌های ترکیبی در بهبود مدل‌سازی تبخیر از تشتک کلاس A

نویسندگان

1 استادیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه رازی کرمانشاه.

2 گروه مرتع و آبخیز داری، دانشکده کشاورزی، دانشگاه گنبد کاووس، گنبد

3 گروه مرتع و آبخیز داری، دانشکده کشاورزی، دانشگاه گنبد کاووس، گنبد، ایران

10.22125/iwe.2021.133763

چکیده

یکی از پارامترهای مهم اقلیمی که در مدل سازی بسیاری از فرآیندهای هیدرلوژی و اقلیمی استفاده می شود مقدار تبخیر-­تعرق می باشد. در این تحقیق، کارایی روش‌ متوسط گیری بیزی (BMA) در ترکیب مدل‌های برآورد تبخیر از سطح نسبت به مدل­های ترکیبی نقطه ای متوسط بیتس گرنجر (BGA) ، وزن‌های بهینه‌شده با روش حداقل مربعات معمولی (GRA)­، روش‌های میانگین‌گیری مبتنی بر معیارهای آکایک (AICA) و شوارتز (BICA ) و متوسط‌گیری با وزن‌های یکسان (EWA) بررسی گردید. بدین منظور در ابتدا با استفاده از مدل‌های منفرد سازمان عمران اراضی آمریکا، تیچومیروف، ایوانف، هنفر، شاهتین، مارسیانو و مایر میزان تبخیر از سطح آب در سه ایستگاه مراوه‌تپه، گنبد و گرگان برآورد گردید. سپس هر یک از مدل­های ترکیبی، جهت ترکیب نتایج خروجی از هر یک از مدل‌های منفرد اجرا شد. نتایج نشان داد در هر سه ایستگاه بهترین عملکرد مدل‌های ترکیبی نقطه ای برای دوره واسنجی و دوره اعتبارسنجی مربوط به روش GRA و ضعیف ترین عملکرد مربوط به روش EWA می‌باشد. نتایج متوسط گیری بیزی نشان داد در هر سه ایستگاه در حالتی که توزیع گاما استفاده گردید حالت های مختلف مدل سازی واریانس آن شبیه یکدیگر بوده و در تمام ایستگاه های حالت های توزیع نرمال عملکرد بهتری نسبت به حالت های توزیع گاما داشته همچنین دامنه عدم قطعیت بدست آمده در حالت توزیع نرمال نسبت به توزیع گاما کوچکتر بود. از سوی دیگر در برآورد نقطه ای روش متوسط گیری بیزی با توزیع نرمال پس از روش GRA عملکرد بهتری نسبت به سایر مدل های ترکیبی داشت.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of combined models Efficiency for improving the evaporation modeling

نویسندگان [English]

  • Masoumeh Farasat 1
  • Hasan Fataabadi 2
  • Haamed Rouhani 3
1 Assistant professor, Department of Water Engineering, Razi University, Kermanshah
2 . Assist. Prof. Watershed management Department, Agricultural faculty, University of Gonbad Kavoos, Gonbad, Iran
3 Watershed management Department, Agricultural faculty, University of Gonbad Kavoos, Gonbad, Iran
چکیده [English]

In this research by combining individual models outputs, the strengths of each single model are used to make a new model that has better performance than each single model. In this study the efficiency of nonparametric K nearest neighbor and BMA model were compared with BGA , GRA,  AICA, BICA, equal weights averaging and lasso methods. For this purpose, the evaporation rate from the water level was simulated at three stations of Marwa Tappeh, Gonbad and Gorgan, using the individual models of the US Land Development Organization, Tchymyorov, Ivanov, Hanfer, Shahten, Marciano and Meyer. Then each combination of models was implemented to combine the outputs of each single model. The results showed that during the calibration and validation period, the best performance was related to the experimental model of the US Land Development Organization. The best performance of the combination models for the calibration period and validation period at the Marah-e-Tappeh station in GRA in Gonbad and Gorgan stations. Regarding the error indices, the best performance of calibration period of GRA method and validation data is related to the GRA, BICA and AICA methods and the worst the function is related to the EWA method. For the validation period, the nearest KNN neighbor method has a better performance than other combination methods.  Bayesian average results showed that in all three stations, in the case of gamma distribution, different modes of its variance modeling were similar and in all stations of normal distribution modes, they had better performance than gamma distribution modes, as well as the range of uncertainty in normal distribution mode, it was smaller than gamma distribution. On the other hand, in the estimation of the point, Bayesian average modification with normal distribution after gra method performed better than other combination models.

کلیدواژه‌ها [English]

  • Evaporation
  • BMA model
  • combined models
Arsenault, R., P. Gatien, B. Renaud, F. Brissette, and J. L.  Martel. 2015. A comparative analysis of 9 multi-model averaging approaches in hydrological continuous streamflow simulation. Journal of Hydrology, 529, 754-767.
   Buckland, S. T., K. P. Burnham, and N. H.  Augustin. 1997. Model selection: an integral part of inference. Biometrics, 603-618.
   Burnham, K. P. and D. R. Anderson. 2004. Multimodel inference: understanding AIC and BIC in model selection. Sociological methods & research, 33(2), 261-304.
   Chen, Y., W. Yuan, J. Xia, J. B. Fisher, W. Dong, X. Zhang and J. Feng. 2015. Using Bayesian model averaging to estimate terrestrial evapotranspiration in China. Journal of Hydrology, 528, 537-549.
   Duan, Q., and T. J. Phillips. 2010. Bayesian estimation of local signal and noise in multimodel simulations of climate change. Journal of Geophysical Research: Atmospheres, 115(D18)., D18123. http://dx.doi.org/10.1029/2009JD013654.
   Duan, Q., N. K. Ajami, X. GAO, and S. Sorooshian.2007. Multi-model ensemble hydrologic prediction using Bayesian model averaging. Advances in Water Resources, 30(5), 1371-1386.
   Diks, C. G., and J. A. Vrugt. 2010. Comparison of point forecast accuracy of model averaging methods in hydrologic applications. Stochastic Environmental Research and Risk Assessment, 24(6), 809-820.
   Draper, D.­1995. Assessment and propagation of model uncertainty. Journal of the Royal Statistical Society: Series B (Methodological), 57(1), 45-70.
   Doane, D. P., and L. W. Seward. 2011. Applied statistics in business and economics. New York, NY: McGraw-Hill/Irwin,.
   Eamus, D.­2003. How does ecosystem water balance affect net primary productivity of woody ecosystems? Functional Plant Biology, 30(2), 187-205. http://dx.doi.org/10.1071/FP02084.
   Fernandez, C., E. Ley, and M. F. Steel. 2001. Model uncertainty in cross‐country growth regressions. Journal of applied Econometrics, 16(5), 563-576.
   Field, A. 2013. Discovering statistics using IBM SPSS statistics. 4th edition. Sage, London, 856 pp.
  Granger, C. W., and R. Ramanathan. 1984. Improved methods of combining forecasts. Journal of forecasting, 3(2), 197-204.
  Hagedorn, R., Doblas-Reyes, F. J., and T. N.  Palmer. 2005. The rationale behind the success of multi-model ensembles in seasonal forecasting—I. Basic concept. Tellus A: Dynamic Meteorology and Oceanography, 57(3), 219-233.
  Hoeting, J. A., D. Madigan, A. E. Raftery,and C. T. Volinsky.1999. Bayesian model averaging: a tutorial. Statistical science, 382-401.
   Jimenez, C., C. Prigent, B. Mueller, S. I. Seneviratne, M. F. McCabe, E. F. Wood, and J. B. Fisher. 2011. Global intercomparison of 12 land surface heat flux estimates. Journal of Geophysical Research: Atmospheres, 116(D2).
  Karamouz, M., and S. H.  Araghinejad. 2005. Advanced hydrology. Amirkabir University of Technology.
  Keane, R. E., K. C. Ryan, T. T. Veblen, C. D. Allen, J. Logan, and B. Hawkes. 2002. Cascading effects of fire exclusion in Rocky Mountain ecosystems: a literature review. The Bark Beetles, Fuels, and Fire Bibliography, 52.
                                                     
  Kisi, O. 2015. An innovative method for trend analysis of monthly pan evaporations. Journal of Hydrology, 527, 1123-1129.
  Li, W., and A. Sankarasubramanian. 2012. Reducing hydrologic model uncertainty in monthly streamflow predictions using multimodel combination. Water Resources Research, 48(12).
 
   Li, Y., H. E. Andersen, and R. McGaughey. 2008. A comparison of statistical methods for estimating forest biomass from light detection and ranging data. Western Journal of Applied Forestry, 23(4), 223-231.
  Najafi, M. R., H. Moradkhani, and I. W. Jung. 2011. Assessing the uncertainties of hydrologic model selection in climate change impact studies. Hydrological processes, 25(18), 2814-2826.
http://dx.doi.org/10.1002/hyp.8043.
   Raftery, A. E., T. Gneiting, F. Balabdaoui, and M. Polakowski. 2005. Using Bayesian model averaging to calibrate forecast ensembles. Monthly weather review, 133(5), 1155-1174.
  Raupach, M. R. 2001. Combination theory and equilibrium evaporation. Quarterly Journal of the Royal Meteorological Society, 127(574), 1149-1181.
 http://dx.doi.org/10.1002/qj.49712757402.
  Singh, H., and A. Sankarasubramanian. 2014. Systematic uncertainty reduction strategies for developing streamflow forecasts utilizing multiple climate models and hydrologic models. Water Resources Research, 50(2), 1288-1307.
  Sloughter, J. M. L., A. E. Raftery, T. Gneiting, and C. Fraley. 2007. Probabilistic quantitative precipitation forecasting using Bayesian model averaging. Monthly Weather Review, 135(9), 3209-3220. http://dx.doi.org/10.1175/MWR3441.1.
  Shamseldin, A. Y., K. M. O'Connor, and G. C. Liang.1997. Methods for combining the outputs of different rainfall–runoff models. Journal of Hydrology, 197(1-4), 203-229.
  Vanzyl, W. H., J. M. De Jager, and C. J.  Maree. 1989. The relationship between daylight evaporation from short vegetation and the USWB Class A pan. Agricultural and forest meteorology, 46(1-2), 107-118.
  Vrugt, J. A., P. H. Stauffer, T. Wöhling, B. A. Robinson, and V. V. Vesselinov.2008. Inverse modeling of subsurface flow and transport properties: A review with new developments. Vadose Zone Journal, 7(2), 843-864.
  Vinukollu, R. K., E.­F. Wood, C.­R. Ferguson, and J. B. Fisher. 2011. Global estimates of evapotranspiration for climate studies using multi-sensor remote sensing data: Evaluation of three process-based approaches. Remote Sensing of Environment, 115(3), 801-823.
  Wu, H., X. Zhang, S. Liang, H. Yang, and G.  Zhou. 2012. Estimation of clear‐sky land surface longwave radiation from MODIS data products by merging multiple models. Journal of Geophysical Research: Atmospheres, 117(D22).D22107.  
 Yang, Y., S. Shang, and L. Jiang. 2012. Remote sensing temporal and spatial patterns of evapotranspiration and the responses to water management in a large irrigation district of North China. Agricultural and Forest Meteorology, 164, 112-122.