پیش‌بینی میدان سرعت در تلاقی کانال‌های روباز با استفاده از مدل‌های داده محور

نویسندگان

1 گروه مهندسی آب، دانشکده کشاورزی و منابع طبیعی، دانشگاه محقق اردبیلی، اردبیل، ایران

2 گروه مهندسی آب، دانشگاه کردستان

10.22125/iwe.2021.138256

چکیده

اندازه­گیری سرعت در محدوده تلاقی کانال­های روباز از جنبه­های هیدرولیکی و زیست محیطی حائز اهمیت است. در این پژوهش با به­کارگیری داده­های آزمایشگاهی، به تخمین دقیق مؤلفه افقی سرعت در محدوده تلاقی کانال­های روباز با استفاده از مدل­های داده محور شامل ANN، ANFIS و GEP پرداخته شد. در مطالعه آزمایشگاهی مذکور، تأثیر شیب جانبی 45 درجه کانال اصلی بر میدان سرعت جریان در مقایسه با دیوار قائم بررسی شد. تعداد نقاط اندازه­گیری شده به­ازای شیب­های جانبی 45 و 90 درجه به­ترتیب برابر 720 و 660 بود. برای تخمین مؤلفه افقی بی­بعد سرعت جریان در محدوده تلاقی از متغیرهای نسبت دبی و مختصات بی­بعد نقاط اندازه­گیری سرعت استفاده شد. برای ارزیابی کارایی مدل­ها از شاخص­های آماری، نمودارهای پراکندگی، جعبه­ای و تیلور استفاده شد. نتایج نشان داد که مدل GEP به­ازای شیب­های جانبی 45 و 90 درجه از بالاترین قدرت تخمین مولفه افقی سرعت برخوردار بود. مقادیر ضریب تعیین (R2)، ریشه میانگین مربعات خطا (RMSE) و میانگین قدر مطلق خطا (MAE) توسط مدل GEP در مرحله صحت­سنجی به­ازای شیب جانبی 45 درجه به­ترتیب برابر با 967/0، 142/0 و 094/0 و به­ازای شیب جانبی 90 درجه مقادیر مذکور به­ترتیب برابر با 956/0، 184/0 و 128/0 به­دست آمد. معادلات ریاضی ارائه شده توسط مدل GEP برای پیش­بینی میدان سرعت طولی در محدوده تلاقی کانال­ها به­ازای شیب­های جانبی 45 و 90 درجه می­تواند به­عنوان جایگزین مناسب برای روش­های مستقیم اندازه­گیری مورد استفاده قرار گیرد.

کلیدواژه‌ها


عنوان مقاله [English]

Velocity Field Prediction in Open-Channels Junction using Data Driven Models

نویسندگان [English]

  • , Mohamadreza Nikpour 1
  • paya,m khosravinia 2
1 Assisstant Professor. Department of Water Engineering. University of Mohaghegh Ardabili.
2 Assistant Professor, Department of Water Sciences and Engineering. Faculty of Agriculture. University of Kurdistan
چکیده [English]

The measurement of velocity in rivers confluences and open-channels junction is important in terms of hydraulic and environmental aspects. In this research, the performance of data driven models including ANN, ANFIS and GEP in estimating horizontal component of flow velocity in the open-channels junction was investigated using Khosravinia (2012) laboratory data. In the mentioned study, effects of a 45o side slope in the main channel on hydraulic characteristics of flow were investigated and compared with those at a 90o side slope. In this regard, the velocity field was measured for side slop angles of 45o and 90o using an ADV. For estimating the horizontal component of the flow velocity in the junction region, the discharge ratio and the dimensionless coordinates of measured points in three dimensional space of flow field were used. The performance of the models and comparison of their results were evaluated by coefficient of determination (R2) and root mean square error (RMSE). In addition to statistical indicators, for objective accuracy checking and performance of data driven models, scatterplot, box-plot, and Taylor diagram were used. Comparison of the results of different models using the best pattern indicates that the GEP model with the highest determination coefficient (R2 = 0.967), the lowest root mean square error (RMSE = 0.142) and the lowest mean absolute error (MAE = 0.094) in validation step has shown better performance than other models in (U/U0) estimation for the side slop angle of 45o. Similarly, the mentioned values were achieved 0.956, 0.184 and 0.128 using the GEP model for the side slop angle of 90o. This is while the ANFIS and ANN models ranked second and third. According to the scatterplots of the GEP model, nearly all the points are concentrated around the one-to-one line, which indicates the high level of predictive capability of this model in (U/U0) estimation for the both side slop angles. Also, according to the box plots, the statistical distribution of the GEP model in the lower and upper quartiles and median 50 percentile had a better performance than the other models, for the both side slop angles. The under and over estimation conditions of the ANFIS and ANN models were evident in these ranges. Moreover, according to the Taylor diagrams, the GEP model was closer to the observations and its superiority to the other models was tangible, with the lowest RMSE and the highest correlation coefficient for the both side slop angles. According to the results, GEP model as a powerful model can be used to replace the direct methods of velocity measurement in the junction region. In other words, using the mathematical equations derived from the GEP model in the present study, the longitudinal velocity field in the open-channels junction for side slopes of 45° and 90° can be predicted accurately.

کلیدواژه‌ها [English]

  • : Velocity field
  • Open- channel junction
  • Side slope
  • Data driven models
خسروی­نیا پ. 1392. بررسی آزمایشگاهی تأثیر شیب جانبی کانال اصلی ذوزنقه­ای بر الگوی جریان، فرسایش و رسوب­گذاری در تلاقی کانال­های باز. رساله دکتری، رشته سازه­های آبی، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز.
طلوعی، س.، حسین­زاده دلیر، ع.، قربانی، م.ع.، فاخری­فرد، ا.، سلماسی، ف. 1390. تخمین زمانی و مکانی بار معلق رودخانه آجی­چای با استفاده از زمین­آمار و شبکه عصبی مصنوعی، نشریه دانش آب و خاک. 21(4): 104-93.
غفاری، غ. و وفاخواه. م. 1392. شبیه­سازی فرآیند بارش- رواناب با استفاده از شبکه عصبی مصنوعی و سیستم فازی- عصبی تطبیقی (مطالعه موردی: حوزه آبخیز حاجی­قوشان). پژوهشنامه مدیریت حوزه آبخیز، 4(8):136-120.
Azamathulla H. M., Deo M. C. & Deolalikar P. B. 2008 Alternative neural networks to estimate the scour below spillways. Advances in Engineering Software, 39(8), 689-698.
Azamathulla H. M. & Zakaria N. A. 2011 Prediction of scour below submerged pipeline crossing a river using ANN. Water Science and Technology, 63(10), 2225-2230.
Best J. L. 1987 Flow dynamics at river channel confluences: Implications for sediment transport and bed morphology. In Recent Developments. In F.G. Etheridge, R. M. Floers & M. D. Harvey (Eds.), Fluvial Sedimentology (39, pp. 27-35), SEPM Special Publication.
Bilhan O., Emiroglu M. E. & Kisi O. 2011 Use of artificial neural networks for prediction of discharge coefficient of triangular labyrinth side weir in curved channels. Advances in Engineering Software, 42(4), 208–214.
Biron P. M., Ramamurthy A. S. & Han S. 2004 Three-dimensional numerical modeling of mixing at river confluences. Journal of Hydraulic Engineering, 130, 243- 253.
Bradbrook K. F., Lane S. N., Richards K. S., Biron P. M. & Roy A. G. 2000 Large eddy simulation of periodic flow characteristics at river channel confluences. Journal of Hydraulic Research, 38(3), 207–215.
Bonakdari H. & Zaji A. H. 2016. Open channel junction velocity prediction by using a hybrid self-neuron adjustable artificial neural network. Flow Measurement and Instrumentation, 49, 46-51.
Debnath J., Das-Pan N., Sharma R. & Ahmed I. 2019 Impact of confluence on hydrological and morphological characters of the trunk stream: a study on the Manu River of North-east India. Environmental Earth Sciences, 78(190), 1-19.
Donmez S. 2011 Using artificial neural networks for prediction of alternate depth shaped on rectangular channel in open channel flow. Energy Education Science and Technology Part A: Energy Science and Research, 28(1), 339–348.
Ebtehaj I., Bonakdari H., Zaji A. H., Azimi H. & Sharifi A. 2015 Gene expression programming to predict the discharge coefficient in rectangular side weirs. Applied Soft Computing, 35, 618-628.
Ferreira C. 2001 Algorithm for solving gene expression programming: A new adaptive problem. Complex Systems, 13(2), 87-129.
Ferreira C. 2006 Automatically defined functions in gene expression programming. In Genetic Systems Programming. Springer Berlin Heidelberg, 21-56.
Hong Y. M., Lyu H. T., Lin H. C. & Kan Y. C. 2011 Using artificial neuron network on the impact characteristics analysis of free overfall flow. Applied Mechanics and Materials, 71, 4124-4128.
Juma I. A., Hussein H. H. & Al-Sarraj M. F. 2014 Analysis of hydraulic characteristics for hollow semi-circular weirs using artificial neural networks. Flow Measurement and Instrumentation, 38, 49-53.
1409.
Kennedy P., Condon M. & Dowling J. 2003. Torque-ripple minimization in switched reluctant motors using a neuro-fuzzy control strategy. In: Proceedings of the IASTED International Conference on Modeling and Simulation.
Kisi O., Sanikhani H., Kermani Z. & Niazi F. 2015 Long-term monthly evapotranspiration modeling by several data-driven methods without climatic data. Computer and Electronics in Agriculture, 115, 66-77.
Leite Ribeiro M., Blanckaert K., Roy A. G. & Schleiss J. 2012. Flow and sediment dynamics in channel confluences. Journal of Geophysical Research, 117, F01035.
Liu T. H., Chen L. & Fan B. L. 2012 Experimental study on flow pattern and sediment transportation at a 90o open-channel confluence. International Journal of Sediment Research, 27, 178-187.
Muzzammil M. 2010 ANFIS approach to the scour depth prediction at a bridge abutment. Journal of Hydroinformatics, 12(4), 474–485.
Nazari-Giglou A., Jabbari-Sahebari A., Shakibaeinia A. & Borghei S. M. 2016 An Experimental Study of Sediment Transport in Channel Confluences. International Journal of Sediment Research, 31(1), 87-96.
Neary V. S. & Sotiropoulos F. 1996 Numerical investigation of laminar flows through 90-degree diversions of rectangular cross-section. Computers and Fluids, 25(2), 95–118.
Onen F. 2014 Prediction of scour at a side-weir with GEP, ANN and regression models. Arabian Journal for Science and Engineering, 39(8), 6031-6041.
Pal M. & Goel A. 2007 Estimation of discharge and end depth in trapezoidal channel by support vector machines. Water resources management, 21(10), 1763-1780.
Parsaie A., Haghiabi A. H., Saneie M., & Torabi H. 2016 Applications of soft computing techniques for prediction of energy dissipation on stepped spillways. Neural Computing and Applications, 29, 1393-1409.
Raikar R. V., Kumar D. N. & Dey S. 2004 End depth computation in inverted semicircular channels using ANNs. Flow Measurement and Instrumentation, 15(5-6), 285-293.
Raikar R. V., Wang C. Y., Shih H. P. & Hong J. H. 2016 Prediction of contraction scour using ANN and GA. Flow Measurement and Instrumentation, 50, 26-34.
Ramos P. X., Schindfessel L., Pego J. P. & Mulder T. P. 2019 Influence of bed elevation discordance on flow patterns and head losses in an open-channel confluence. Water Science and Engineering, DOI: https://doi.org/10.1016/j.wse.2019.09.005
Rhoads B. L. & Sukhodolov A. N. 2008 Lateral momentum flux and the spatial evolution of flow within a confluence mixing interface. Water Resources Research, 44, 27–143.
Rhoads B. L., Riley J. D. & Mayer D. R. 2009 Response of bed morphology and bed material texture to hydrological conditions at an asymmetrical stream confluence. Geomorphology, 109, 161–173.
Russel S. O. & Campbell P. F. 1996 Reservoir operating rules with fuzzy programming. Journal of Water Resources Planning and Management, 122(3), 165–170.
Ramamurthy A. S., Qu J. & Zhai C. 2006 3D simulation of combining flows in 90 rectangular closed conduits. Journal of Hydraulic Engineering, 132(2), 214-218
Shabayek S., Steffler P. & Hicks F. 2002 Dynamic model for subcritical combining flows in channel junctions. Journal of Hydraulic Engineering, 128, 821-828.
Shakibainia A., Majdzade-Tabatabai M. R. & Zarrati A. R. 2010 Three-dimensional numerical study of flow structure in channel confluences. Canadian Journal of Civil Engineering, 37, 772- 781.
 Sharifi S., Sterling M. & Knight D. W. 2011 Prediction of end-depth ratio in open channels using genetic programming. Journal of Hydroinformatics, 13(1), 36-48.
Sharifpour M., Bonakdari H. & Zaji A. H. 2015 Open channel junction velocity prediction by gene expression programming and regression methods. International Conference on Civil Engineering Architecture and urban infrastructure. Tabriz, Iran.: University of Tabriz.
Sharifpour M., Bonakdari H. & Zaji A. H. 2018. Comparison of genetic programming and radial basis function neural network for open-channel junction velocity field prediction. Neural Computation and Application, 30, 855-864.
Sigaroodi, S.K., Chen, Q., Ebrahimi, S., Nazari, A., Choobin, B., 2014. Long-term precipitation forecast for drought relief using atmospheric circulation factors: A study on the Maharloo basin in Iran. Hydrology and Earth System Sciences, 18(5), 1995-2006.
Sukhodolov A. & Rhoads B. L. 2001 Field investigation of three-dimensional flow structure at stream confluences 2: Turbulence. Water Resources Research. 37(9), 2411–2424.
 
Ullah M. S., Bhattacharya J. P. & Dupre W. R. 2015 Confluence scours versus incised valleys: examples from the Cretaceous Ferron Notom Delta, Southeastern Utah, U.S.A. Journal of Sedimentary Research, 85(5), 445–458.
Xhang Ting X. U. & Wei-lin W. U. 2009 Numerical simulation of three-dimensional characteristics of flow at 90o open-channel junction. Journal of Hydraulic Engineering, 40(1), 52-59.
Yuan S., Tang H., Xiao Y., Qiu X. & Xia Y. 2017 Water flow and sediment transport at open-channel confluences: an experimental study. Journal of Hydraulic Research, 56(3), 333-350.
Zaji A. H. & Bonakdari H. 2015a Application of artificial neural network and genetic programming models for estimating the longitudinal velocity field in open channel junctions. Flow Measurement and Instrumentation, 41, 81-89.
Zaji A. H. & Bonakdari H. 2015b Efficient methods for prediction of velocity fields in open channel junctions based on the artificial neural network. Engineering Applications of Computational Fluid Mechanics, 9(1), 220-232.
Zhang T., Feng M. & Chen K. 2019 Field investigation of flow and bed erosion/deposition at the confluence of the Yellow River and Fen River. The 2nd International Symposium on Water Pollution and Treatment, 427(2020), 012007.