بررسی آزمایشگاهی تاثیر موقعیت پایه روی آبشستگی موضعی اطراف پایه پل در قوس 90 درجه ملایم

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشجوی دکتری گروه سازه های آبی دانشگاه رازی، کرمانشاه

2 2- دانشیار گروه مهندسی آب، دانشگاه رازی، کرمانشاه

3 3- استاد، دانشکده عمران و محیط زیست، دانشگاه تربیت مدرس

چکیده

پل­ها از جمله مهمترین و پرکاربردترین سازه­های رودخانه­ای هستند که هر ساله با وقوع سیلاب تعداد زیادی از آنها تخریب می­شوند. آبشستگی موضعی اطراف پایه­های پل از جمله عوامل موثر در این تخریب­ها است. در این تحقیق برای بررسی عمق آبشستگی در اطراف پایه پل در قوس رودخانه، آزمایش­هایی در یک فلوم آزمایشگاهی با قوس 90 درجه با نسبت7/3  و از جنس پلاکسی گلاس و فولاد انجام پذیرفت. بدین منظور با قرار دادن یک پایه استوانه­ای به قطر 45 میلی­متر در زوایای 30، 45 و 60 درجه در طول قوس پدیده آبشستگی حول پایه در حالت آب زلال و 3 عدد فرود جریان بررسی شد. برای مصالح کف فلوم از ماسه طبیعی با قطر متوسط 85/0 میلی­متر استفاده شد. نتایج این تحقیق نشان داد که حداکثر عمق آبشستگی هنگام نصب پایه استوانه­ای در طول قوس متفاوت بوده و با افزایش دبی جریان در کلیه موقعیت­ها، عمق و حجم چاله آبشستگی نیز افزایش می­یابد. همچنین حداکثر عمق و حجم آبشستگی در نیمه دوم خم در زاویه 60 درجه و حداقل عمق و حجم آبشستگی در میانه خم در زاویه 45 درجه رخ می­دهد. در نهایت مشاهده گردید که توسعه پشته رسوبی بعد از پایه و میزان گسترش آن در نیمه اول خم بیشتر از نیمه دوم آن بود. علاوه­ بر ­این نتایج این تحقیق نشان داد حداکثر و حداقل  مقدار عمق آبشستگی نسبت به  قطر پایه به ترتیب برابر با 24/2 و 22/1 می باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Laboratory Study of Pier Location on Scouring Around Bridge Pier in 90-Degree Mild Bend

نویسندگان [English]

  • Seyed Sasan katourany 1
  • Rsool Ghobadian 2
  • Masoud Ghodsian 3
1 Water engineering-Water structures, Razi University,,,,, Kermanshah, Iran
2 Candidate Hydraulic Structures, Department of Water Eng., Razi University, Kermanshah, Iran
3 3- Professor, Faculty of Civil and Environmental Engineering, Tarbiat Modarres University
چکیده [English]

Bridges are the most useful structures on rivers which floods cause damage to them every year. One of the known factors in bridges destruction is local scouring around the bridge piers. In this study, to investigate the scour depth around the bridge pier in the river bend, experiments were performed in a laboratory flume with a 90-degree bend with  . By placing a cylindrical pier with a diameter of 45 mm at three locations of 30, 45 and 60 degrees along the bend, for three flow Froude numbers, the scouring around the pier under clear water condition was investigated. Natural sand with an average diameter of 0.85 mm is used for the bed materials. The results showed that the maximum scour depth around the bridge pier varies at a different location along the bend. Besides, the flow discharge increase grows the depth and volume of the scour hole at all positions. Additionally, maximum and minimum depth and volume of scouring hole occurs in the second half of the bend at 60- degree position and in the middle of the bend at 45- degree position, respectively. Finally, it was recorded that the development of the sedimentary hill after the pier and its extent in the first half of the bend was higher than the second half of bend. The result also indicated that the maximum and minimum scour depths relative to the pier diameter are equal to 2.24 and 1.22, respectively.

کلیدواژه‌ها [English]

  • Local Scouring
  • bridge pier
  • Pier location
  • 90-degree mild bend
امامی، ی.، م. میرباقری، ا. ا. دهقنی و م. قدسیان. 1385. آبشستگی اطراف پایه استوانه­ای شکل در یک قوس 180 درجه. هفتمین سمینار بین­المللی رودخانه، دانشگاه شهید چمران اهواز.
شفاعی بجستان، م. 1387. مبانی نظری و عملی هیدرولیک انتقال رسوب . انتشارات دانشگاه شهید چمران اهواز.
صالحی نیشابوری، س. ع. ا.، و ا. اقبال­زاده. 1381. بررسی اثر جریان بر توپوگرافی بستر در قوس. ششمین سمینار بین­اللمللی مهندسی رودخانه، صص. 567-574.
مسجدی، ع.، ح.، کاظمی و ا. مرادی. 1390. اثر موقعیت پایه پل استوانه­ای بر عمق آبشستگی در قوس 180 درجه رودخانه­ها. مجله علوم و فنون کشاورزی و منابع طبیعی، علوم آب و خاک، دوره 15، شماره 57.
Breusers, H.N.C. and A.J. Raudkivi. 1991. Scouring, HydraulicStructure Design Manual. No.2, IAHR, Balkema, PP. 143.
Chiew, Y.M. and B.W. Melville. 1987. Local scour around bridge piers. Journal of Hydraulic Resourses, 25(1): 15-26.
Dargahi, B. 1987. Controlling mechanism of local scouring. Journal of Hydraulic Engineering, ASCE 116 (10):1197-1214.
Ippen, A.T. and P. Drinker. 1962. Boundry shear stress in curved trapezoidal channels. J. Hydraul. Div. 88(HY5).
Lagasse, P.F. and E.V. Richardson. 2001. ASCE compendium of stream stability and bridge scour papers. J. Hydraul. Eng, ASCE 127(7): 531-533.
Melville, B.W. and Y.M. Chiew. 1999. Time scale for local scour depth at bridge piers. J. Hydraul. Eng. ASCE 125(1):59-65.
Melville, B.W. and S.E. Coleman. 2002. Bridge scour. Water Resour. Pub. LLC, Colorado, USA.
Mosonyi, E. and W. Gotz. 1973. Secondary currents in subsequent model bends. International Symposium on River Mechanics, pp. 191-201.
Odgard, A. J. and A. Bergs. 1988. Flow processes in a curved alluvial channel, Water Resources Research, 24(1): 45-56.
Oliveto, G. and W.H. Hager. 2002. Temporal evolution of clear-water pier and abutment scour. J. Hydraul. Eng. ASCE 128(9): 811-820.
Raudkivi, A.J. and R. Ettema. 1983. Clear-water scour at cylindrical piers. J. Hydraul. Eng. ASCE 109(3): 339-350.
Raudkivi, A.J. 1998. Loose Boundry Hydraulics. 4th ed., Rotterdam, Brookfield, Balkema, VT. 496 p.
Richardson, E.V. and S.R. Davies. 1995. Evaluating scour at bridges. Rep. No. FHWAIP-90-017 (HEC 18), Federal Administration, U.S. Department of Transportation, Washington, D.C.
Rozovskii, I. L. 1957. Flow of water in bend of open channel, Academy of Sciences of the Ukrainian SSR, Institute of Hydrology and Hydraulic Engineering.
Schlichting, H. and Gersten, K. 2000. Boundary layer theory, New York, Springer Verlag.
Vijayasree, B. A., T. I. Eldho., B. S. Mazumder and N. Ahmad. 2019. Influence of bridge pier shape on flow field and scour geometry. International Journal of River Basin Management, 17(1):
 
109-12