بهینه‌سازی فرایند اکسیداسیون فتوشیمیایی دگزامتازون بر پایه رادیکال‌های سولفات به روش سطح پاسخ

نویسندگان

1 دانشجوی دکتری مهندسی آب و فاضلاب، دانشکده محیط زیست، دانشگاه تهران. تهران، ایران.

2 گروه مهندسی محیط زیست، دانشکده محیط زیست، دانشگاه تهران، تهران، ایران.

3 گروه مهندسی محیط زیست، دانشکده محیط زیست، دانشگاه تهران، تهران، ایران

10.22125/iwe.2023.173337

چکیده

دگزامتازون از پرمصرف­ترین گلوکوکورتیکواستروئیدها در مراکز درمانی به شمار می‌رود که با توجه به عدم کارایی روش­های تصفیه متداول در حذف آن از فاضلاب، امکان­سنجی کاربرد رادیکال سولفات جهت حذف مناسب این آلاینده از محلول­های آبی ضرورت دارد. هدف از انجام این مطالعه، بررسی حذف داروی دگزامتازون از محلول­های آبی توسط رادیکال سولفات تحت تابش پرتو فرابنفش (UV/S2O8-2) با استفاده از روش سطح پاسخ (RSM) می­باشد. میزان حذف دگزامتازون با بررسی تاثیر متغیرهای pH بین 9-3، پرسولفات (mM/L 5- 5/0)، غلظت اولیه دگزامتازون (mg/L 10- 2) و زمان واکنش (10 تا 60 دقیقه) مورد بررسی قرار گرفت. غلظت دگزامتازون با استفاده از دستگاه کروماتوگرافی مایع با عملکرد بالا (HPLC) در طول موج 213 نانومتر سنجش شد. نتایج نشان داد فرایند  UV/S2O8-2در حذف کامل دگزامتازون موثر است، به­نحوی که با کاهش pH و غلظت دگزامتازون اولیه و همچنین با افزایش غلظت پرسولفات و زمان تماس، راندمان حذف دگزامتازون افزایش می­یابد. نتایج این مطالعه نشان داد می­توان با استفاده از مدل آماری سطح پاسخ، در تعداد معینی از آزمایش­ها، فرایند UV/S2O8-2  را بهینه­سازی نمود. حذف دگزامتازون در شرایط بهینه pH (7/7)، غلظت پرسولفات (mM/L 7/2)، غلظت اولیه دگزامتازون (mg/L 2/5) و زمان واکنش 34 دقیقه، 100 درصد می­باشد. با توجه به پایداری و توانایی اکسیداسیون بالای رادیکال­های سولفات (SO4-.)، پیشنهاد می­شود که از فرایند  UV/S2O8-2 جهت حذف دگزامتازون از محلول­های آبی استفاده گردد.
 
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Optimization of Dexamethasone Photochemical Oxidation Process Based on Sulfate Radicals using Response Surface Methodology

نویسندگان [English]

  • Kamyar Arman 1
  • Majid Baghdadi 2
  • Alireza Pardakhti 3
1 PhD student in Water and Wastewater Engineering, Faculty of Environment, University of Tehran. Tehran, Iran.
2 Department of Environmental Engineering, Faculty of Environment, College of Engineering, University of Tehran, Tehran, Iran.
3 , Department of Environmental Engineering, Faculty of Environment, College of Engineering, University of Tehran, Tehran, Iran
چکیده [English]

Dexamethasone is one of the most widely used glucocorticosteroids in medical centers. Due to the inefficiency of conventional treatment methods in its removal from wastewater, it is necessary to evaluate the use of sulfate radicals to properly remove this contaminant from aqueous solutions. The aim of this study was to investigate the removal of dexamethasone from aqueous solutions by sulfate radical under ultraviolet irradiation (UV/S2O8-2) using the Response Surface Methodology (RSM). Dexamethasone removal efficiency in this method by investigating the effect of pH variables between 3 to 9, persulfate (0.5-5 mM/L), initial concentration of dexamethasone (2-10 mg/L) and reaction time (10 to 60 minutes) Was investigated. Dexamethasone concentrations were measured using a high-performance liquid chromatography (HPLC) at 213 nm. The results showed that the UV/S2O8-2 process is effective in the complete removal of dexamethasone, so that by decreasing the pH and concentration of the initial dexamethasone as well as by increasing the concentration of persulfate and reaction time, the removal efficiency of dexamethasone increases. The results of this study showed that the UV/S2O8-2 process can be optimized in a certain number of experiments using the response surface methodology. Dexamethasone removal under optimal conditions of pH (7.7), persulfate concentration (2.7 mM/L), initial concentration of dexamethasone (5.2 mg/L) and reaction time of 34 minutes is 100 %. Due to the stability and high oxidation ability of sulfate radicals (SO4-.), It is recommended to use UV/S2O8-2 process to remove dexamethasone from aqueous solutions.
 

کلیدواژه‌ها [English]

  • Aqueous solutions
  • Dexamethasone
  • Photochemical
  • Response surface methodology
  • Sulfate radical
Abbas, M., 2020. Experimental investigation of activated carbon prepared from apricot stones material (ASM) adsorbent for removal of malachite green (MG) from aqueous solution. Adsorption Science & Technology, 38(1-2), 24-45.
Agarwal, S., Tyagi, I., Gupta, V. K., Dastkhoon, M., Ghaedi, M., Yousefi, F., & Asfaram, A. 2016. Ultrasound-assisted adsorption of Sunset Yellow CFC dye onto Cu doped ZnS nanoparticles loaded on activated carbon using response surface methodology based on central composite design. Journal of Molecular Liquids, 219, 332-340.
Amooey, A. A., Amouei, A., Tashakkorian, H., & Mohseni, S. N. 2016. Performance of Clinoptilolite Zeolite in Removal of Dexamethasone from Aqueous Solutions. Journal of Mazandaran University of Medical Sciences, 25(133), 128-137.
Arsand, D. R., Kümmerer, K., & Martins, A. F. 2013. Removal of dexamethasone from aqueous solution and hospital wastewater by electrocoagulation. Science of the Total Environment, 443, 351-357.
Bina, B., Hajizadeh, Y., Karimi, S., Ahmadnia, H., & Meserghani, M. 2018. Efficiency of Electro-Persulfate Process Optimized with Hydrogen Peroxide in Removal of Hospital Wastewater COD by Response Surface Methodology. Journal of Rafsanjan University of Medical Sciences, 17(5), 407-420.
Chen, X., Du, W., & Liu, D. 2008. Response surface optimization of biocatalytic biodiesel production with acid oil. Biochemical Engineering Journal, 40(3), 423-429.
Da Silva, W. L., Lansarin, M. A., dos Santos, J. H. Z., Da Rocha, Z. N., & Pepe, I. M. 2016. Electrochemical and catalytic studies of a supported photocatalyst produced from petrochemical residue in the photocatalytic degradation of dexamethasone and guaifenesin drugs. Water, Air, & Soil Pollution, 227(7), 1-9.
Devi, P., Das, U., & Dalai, A. K. 2016. In-situ chemical oxidation: principle and applications of peroxide and persulfate treatments in wastewater systems. Science of the Total Environment, 571, 643-657.
Elmorsi, T. M., Riyad, Y. M., Mohamed, Z. H., & Abd El Bary, H. M. 2010. Decolorization of Mordant red 73 azo dye in water using H2O2/UV and photo-Fenton treatment. Journal of Hazardous Materials, 174(1-3), 352-358.
Eslami, A., Asadi, A., Meserghani, M., & Bahrami, H. 2016. Optimization of sonochemical degradation of amoxicillin by sulfate radicals in aqueous solution using response surface methodology (RSM). Journal of molecular liquids, 222, 739-744.
Federation, W.E. and Aph Association, 2005. Standard methods for the examination of water and wastewater. American Public Health Association (APHA): Washington, DC, USA, 21.
Goslan, E. H., Gurses, F., Banks, J., & Parsons, S. A. 2006. An investigation into reservoir NOM reduction by UV photolysis and advanced oxidation processes. Chemosphere, 65(7), 1113-1119.
Hilles, A. H., Amr, S. S. A., Hussein, R. A., El-Sebaie, O. D., & Arafa, A. I. 2016. Performance of combined sodium persulfate/H2O2 based advanced oxidation process in stabilized landfill leachate treatment. Journal of environmental management, 166, 493-498.
Hopanna, M., Mangalgiri, K., Ibitoye, T., Ocasio, D., Snowberger, S. and Blaney, L., 2020. UV-254 transformation of antibiotics in water and wastewater treatment processes. In Contaminants of Emerging Concern in Water and Wastewater (pp. 239-297). Butterworth-Heinemann.
Kazemi, F., Zamani, H., Abedi, M., Ebrahimi, M. 2021. 'Photodegradation of Tramadol Using α-Fe2O3 nanoparticles/ 12-tungstosilicic Acid as an Efficient Photocatalyst in Water Sample Employing Box-Behnken Design', Chemical Methodologies, 5(6), 522-533. 
Kwon, M., Kim, S., Yoon, Y., Jung, Y., Hwang, T. M., Lee, J., & Kang, J. W. 2015. Comparative evaluation of ibuprofen removal by UV/H2O2 and UV/S2O82− processes for wastewater treatment. Chemical Engineering Journal, 269, 379-390.
Li, W., Jain, T., Ishida, K., & Liu, H. 2017. A mechanistic understanding of the degradation of trace organic contaminants by UV/hydrogen peroxide, UV/persulfate and UV/free chlorine for water reuse. Environmental Science: Water Research & Technology, 3(1), 128-138.
Nahar, L., & Sarker, S. D. 2019. Chemistry for pharmacy students: general, organic and natural product chemistry. John Wiley & Sons.
Obotey Ezugbe, E. and Rathilal, S., 2020. Membrane technologies in wastewater treatment: a review. Membranes, 10(5), p.89.
Rahmani, H., Rahmani, K., Rahmani, A., & Zare, M. R. 2015. Removal of dexamethasone from aqueous solutions using sono-nanocatalysis process. Research Journal of Environmental Sciences, 9(7), 320.
Saien, J., Osali, M., & Soleymani, A. R. 2015. UV/persulfate and UV/hydrogen peroxide processes for the treatment of salicylic acid: effect of operating parameters, kinetic, and energy consumption. Desalination and Water Treatment, 56(11), 3087-3095.
Shajari, M., Rostamizadeh, K., Shapouri, R. and Taghavi, L., 2020. Eco-friendly curcumin-loaded nanostructured lipid carrier as an efficient antibacterial for hospital wastewater treatment. Environmental Technology & Innovation, 18, p.100703.
Sharma, J., Mishra, I. M., Dionysiou, D. D., & Kumar, V. 2015. Oxidative removal of Bisphenol A by UV-C/peroxymonosulfate (PMS): Kinetics, influence of co-existing chemicals and degradation pathway. Chemical Engineering Journal, 276, 193-204.
Shi, Z.Q., Zhou, Y.Z., Yang, Z.B., DAI, W., SHANG, J.C., DENG, X.C. and HE, D.P., 2012. Approach the contamination of dexamethasone in the effluent water. Guide of China Medicine, 10(9), pp.319-321.
Shokoohi, R. and Salari, M., 2018. Performance survey of the advanced oxidation process of UV/H2O2 and UV/S2O8 in Dexamethasone removal from aqueous solutions. J Neyshabur Univ Med Sci, 6(1), pp.81-92.
Walter, W.G., 1961. Standard methods for the examination of water and wastewater.
Xiang, W., Zhang, X., Chen, J., Zou, W., He, F., Hu, X., Tsang, D.C., Ok, Y.S. and Gao, B., 2020. Biochar technology in wastewater treatment: A critical review. Chemosphere, 252, p.126539.
Xu, X. R., & Li, X. Z. 2010. Degradation of azo dye Orange G in aqueous solutions by persulfate with ferrous ion. Separation and purification technology, 72(1), 105-111.
Xu, Z., Shan, C., Xie, B., Liu, Y., & Pan, B. 2017. Decomplexation of Cu (II)-EDTA by UV/persulfate and UV/H2O2: efficiency and mechanism. Applied Catalysis B: Environmental, 200, 439-447.
Yuan, F., Hu, C., Hu, X., Wei, D., Chen, Y., & Qu, J. 2011. Photodegradation and toxicity changes of antibiotics in UV and UV/H2O2 process. Journal of hazardous materials, 185(2-3), 1256-1263.
Zhang, X., Ma, Y., Tang, T., Xiong, Y. and Dai, R., 2020. Removal of cyanobacteria and control of algal organic matter by simultaneous oxidation and coagulation-comparing the H2O2/Fe (II) and H2O2/Fe (III) processes. Science of The Total Environment, 720, p.137653.
Zhang, Y., Zhang, J., Xiao, Y., Chang, V. W., & Lim, T. T. 2016. Kinetic and mechanistic investigation of azathioprine degradation in water by UV, UV/H2O2 and UV/persulfate. Chemical Engineering Journal, 302, 526-534.