بررسی تأثیر شکل هندسی موانع راه ماهی T شکل بر بهبود عملکرد آن

نوع مقاله : مقاله پژوهشی

نویسندگان

گروه عمران-دانشکده مهندسی-دانشگاه بیرجند-بیرجند-ایران

چکیده

احداث سازه‌های هیدرولیکی در مسیر رودخانه‌ها، بروز اختلال در روند طبیعی زندگی آبزیان و اکوسیستم منطقه را در پی‌ دارد. به‌منظور تسهیل راه ارتباطی بین پایین‌دست و بالادست سازه‌های هیدرولیکی متقاطع با رودخانه، مانند بندها و سدها، برطرف‌سازی عدم توانایی شنای ماهیان به بالادست و نیز تسهیل درحرکت آن‌ها به پائین‌دست ساخت سازه راه‌ماهی کاربرد فراوان دارد. انواع مختلف این نوع سازه‌ها باید طوری طراحی شوند که نوع ماهی مهاجر منطقه را جذب کنند و آن‌ها را به‌ طور ایمن عبور داده و از خروجی خارج نماید، بدون اینکه ماهی زخمی شود یا تأخیر غیرضروری برای ماهی بالغ تخم ریزنده به وجود آورد. از این‌رو در تحقیق حاضر به‌منظور تعیین شکل بهینه موانع مورد استفاده در مسیر راه‌ماهی T شکل، سازه مزبور با چهار نوع شکل از موانع به ‌صورت عددی و با بهره‌گیری از نرم‌افزار OpenFOAM و مدل آشفتگی K-ε شبیه‌سازی شد. صحت‌سنجی مدل عددی از طریق مقایسه با نتایج مدل آزمایشگاهی مرتبط صورت گرفت. یافته‌های مدل عددی حاکی از تطابق مناسب مدل عددی با نتایج آزمایشگاهی دارد. از میان چهار پیکربندی مدنظر با لحاظ‌کردن فاکتورهای مختلف، پیکربندی D3 موانع T شکل، در جهات طولی و عرضی جریان، به‌ترتیب با دستیابی به 6/38% و 5/41% جریان‌های برگشتی، 9/85% و 3/92% جریان‌های با سرعت کمتر از 5/0 متر بر ثانیه، 6/51% و 8/17% مقادیر انرژی جنبشی آشفتگی کمتر از 02/0 متر مربع بر مجذور ثانیه و 1/72% و 3/19% درصد استهلاک انرژی بزرگتر از آستانه حدی، بهترین عملکرد را به خود اختصاص داد.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Investigating the Effect of Geometric Shape of T-Shaped Fishway Barriers on Improving Its Performance

نویسندگان [English]

  • Dana Ghaderi
  • Mahdi Mollazadeh
  • Hossein Mahdizadeh
Civil engineering department-Faculty of engineering-University of Birjand-Birjand
چکیده [English]

Construction of hydraulic structures along rivers leads to disruption of the aquatic life cycle and ecosystem of the region. Fishway structures are widely used to facilitate access between downstream and upstream hydraulic structures crossing the river, such as dams, to eliminate the inability of fish to swim upstream, and to facilitate their downstream movement. Therefore, in the present study, in order to determine the optimal shape of the barriers used in the T-shaped fishway, the structure was simulated numerically with four types of barriers using OpenFOAM software and the K-ε turbulence model. The numerical model was validated by comparing its results with the results of the related laboratory model. The findings indicate a good agreement between the results of the numerical model and the laboratory results. Among the four specific configurations taking into account different factors, the D3 configuration of T-shaped barriers achieved 38.6% and 41.5% of reverse flow, 85.9% and 92.3% of flows with velocities less than 0.5 m/s, 51.6% and 17.8% of kinetic energy values of turbulence less than 0.02 m2/s2 and 72.1% and 19.3% of energy dissipation greater than 8, in longitudinal and transverse flow profiles respectively. had the best performance.

کلیدواژه‌ها [English]

  • Turbulence Kinetic Energy
  • Energy Dissipation Percentage
  • Fishway
  • T-Shaped Barriers
  • OpenFOAM Software
قادری، د.، م. ملازاده و م. اکبری. 1399. شبیه‌سازی عددی توزیع سرعت جریان در سازه راه‌ماهی استخر با استفاده از نرم‌افزار Flow-3d، نوزدهمین کنفرانس هیدرولیک ایران، دانشگاه فردوسی مشهد.
لشکرآرا، ب.، ف. قلاوند و م. ذاکر مشفق. 1395. ارزیابی عملکرد زیست محیطی راه ماهی دنیل. نشریه مهندسی منابع آب، سال نهم، شماره 30، ص 24-13.
بهاروند، س. و  ب. لشکرآرا. 1397. تعیین سطح مؤثر حوضچه استراحتگاهی در راه ماهی با بازشدگی قائم نوع 1 به هنگام عبور ماهی آزاد چینوک. نشریه مهندسی عمران و محیط زیست، شماره 4، ص 12-1.
     DVWK, Fish passes: Design, dimensions and monitoring, Food and Agriculture Organization of the United Nations in arrangement with Deutscher Verband für Wasserwirtschaft und Kulturbau e.V. (DVWK), Rome, 2002.
    Fuentes-Perez, J., F. Sanz-Ronda, A. Azagra and A. García-Vega. 2016. non-uniform hydraulic behavior of pool-weir fishways: a tool to optimize its design and performance. Ecological Engineering, 86: 5-12.
    Quaranta, E., C. Katopodis and C. Comoglio. 2019. Effects of bed slope on the flow field of vertical slot fishways. River Research and Applications, 35(6): 1-13.
    Stamou, A.I., G. Mitsopoulos, P. Rutschmann and M. Bui. 2018. Verification of a 3D CFD model for vertical slot fish-passes. Environmental Fluid Mechanics, 18: 1435 -1461.
    Rajaratnam, N. and C. Katopodis. 1984. Hydraulics of Denil fishways. Journal of Hydraulic Engineering, 110(9): 1219-1233.
    Mao, X., F. Jing-jing, T. You-cai and A. Rui-dong. 2012. Influence of structure on hydraulic characteristics of T shape fishway. Journal Hydrodynamics, 24(5): 684-691.
    Leon, A.S., A. Ghidaoui, A.R. Schmidt and M.H. Garcia. 2010. A robust two-equation model for transient-mixed flows. Journal of Hydraulic Research, 48(1): 44-56.
    Mao, X. 2018. Review of fishway research in China. Ecological Engineering, 115: 91-95.
    Mao, X., J. Li, R. An, W. Zhao and K. Li. 2019a. Study of key technologies for fishways in the plateaus of western China. Global Ecology and Conservation, 20: 1-12.
    Peake, S. 2004. An Evaluation of the Use of Critical Swimming Speed for Determination of Culvert Water Velocity Criteria for Smallmouth Bass. Transactions of the American Fisheries Society, 133(6): 1472-1479.
    Mao, X., J. Zhang, K. Tang and W. Zhao. 2019b. Designs for T shape fishways. The Civil Engineering Journal, 28(2):  270-280.
    Aghebatie, B. and  Kh. Hosseini. 2019. Computational investigation on the effects of rib on the slug flow phenomenon; using OpenFOAM. Int J Modern Phys C, 30(6): 1-12. doi.org/10.1142/S0129183119500517.
    Cea, L., L. Pena and J. Puertas. 2007. Application of Several Depth Averaged turbulence models to simulate flow in vertical slot fishways. Journal of Hydraulic Engineering, 133: 160-172.
    Hunter, L.A. and L. Mayor. 1986. Analysis of fish swimming performance data. North/South Consultants Inc. Winnipeg, Manitoba, Canada.