ارزیابی کارایی روش توابع متعامد تجربی نسبت به سیستم استنتاج فازی و شبکه عصبی مصنوعی برای پیش‌بینی جریان

نوع مقاله: مقاله پژوهشی

نویسندگان

1 آبیاری و زهکشی، گروه مهندسی آب دانشگاه رازی کرمانشاه

2 گروه مهندسی آب دانشگاه رازی کرمانشاه

3 استادیار گروه مهندسی آب، دانشکده کشاورزی، دانشگاه رازی، ایران

4 - استادیار گروه مهندسی آب، دانشگاه رازی

5 استادیار گروه مهندسی عمران، دانشکده فنی، دانشگاه آزاد زنجان، ایران

چکیده

برای پیش­بینی مقدار جریان ورودی، معمولا دو روش کلی مدل‌سازی متکی به فرآیند و مدل­سازی متکی به داده استفاده می‌شود. از جمله روش‌های متکی به داده در زمینه پیش­بینی جریان رودخانه، مدل­های شبکه عصبی مصنوعی، مدل­های رگرسیون، مدل­های سری­زمانی و مدل­های منطق­فازی می­باشد. در این تحقیق کارایی روش دیگری به نام تکنیک توابع متعامد تجربی نسبت به روش‌های شبکه عصبی مصنوعی و سیستم استنتاج فازی برای پیش­بینی جریان ماهانه ورودی به مخزن سد لتیان مورد ارزیابی قرار گرفت. پنج مدل ساخته شده توسط شبکه عصبی مصنوعی و سیستم استنتاج فازی شبیه هم بوده که بستگی به باران، دما و دبی دارد و مدل‌های ساخته شده توسط توابع متعامد تجربی فقط بستگی به دبی در ایستگاه لتیان و ایستگاه‌های مجاور دارد. ابتدا برای هر مدل بهترین ترکیب شناسایی شد سپس فاکتورهای آماری CE ، MAPE ، RMSE و CORR در بهترین ترکیب‌های هر مدل مورد مقایسه قرار گرفت. نتایج عددی نشان داد بهترین مدل مربوط به سیستم استنتاج فازی می­باشد. لذا کارایی این مدل نسبت به مدل های شبکه عصبی و توابع متعامد بیشتر می‌باشد

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of empirical orthogonal functions to the fuzzy inference system and artificial neural network to predict the flow

نویسندگان [English]

  • Karim khodaei 1
  • houshang qamarnia 2
  • , abdollah taheri 3
  • Rasool Ghobadiyan 4
  • mohammad hosein noori 5
1 Graduate master of irrigation and drainage, Department of water engineering, Razi university,
2 -Assistant professor, Department of water engineering, Faculty of agriculture, Razi university, Iran
3 Assistant professor, Department of water engineering, Faculty of agriculture, Razi university, Iran
5 ssistant professor, Department of civil engineering, Faculty of engineer, azad university, Iran
چکیده [English]

To predict the value of the streamflow, usually two methods of the Process-driven methods and Data – driven methods is used. Including Data – driven methods in river flow forecasting is artificial neural network, regression, time series and fuzzy logic. In this study, performance of another method empirical orthogonal functions than artificial neural network and fuzzy inference system to predict monthly inflow Latyan Dam reservoir was evaluated. Five models of ANN and ANFIS are similar and depends on  rainfall, temperature and streamflow. Whereas five models of EOF depends on only streamflow in Latian station and Adjacent stations. Initial for all models the best combination identified, then statistical parameters of CE, MAPE, RMSE, CORR in the best combinations of all models  were compared. The results showed that the fuzzy inference system, a better performance than the other way round

کلیدواژه‌ها [English]

  • : Artificial Neural Network
  • Empirical Orthogonal Functions
  • Fuzzy Inference System Flow Forecasting
  • model

عرب، ر. 1385.  بررسی آماری ارتباط بارش و جریان رودخانه های حوضه جراحی با پدیده های اقلیمی ENSO, NAO. هفتمین سمینار بین المللی مهندسی رودخانه. اهواز.

2- محمدی، م.، م. محمودشوشتری. 1385. برآورد دبی هفتگی متوسط رودخانه کر بوسیله شبکه عصبی مصنوعی و مدل hec-hms. هفتمین سمینار بین المللی مهندسی رودخانه. اهواز.

3- نوری قیداری، م. 1384.  کلاسه بندی منطقه ای مقادیر حدی جریان رودخانه با نگرش آماری. پایان نامه کارشناسی ارشد گروه مهندسی آب. دانشگاه تهران.

4. Braud, I. 1992. EOF analysis: analytical aspects of a geostatistical like method adapted to the simulation of non-stationary fields. Statistics for Spatial Data. Wiley, New York,USA.

5. Hisdal, H. ؛Tveito, O.E. 1993. Extension of runoff series using empirical orthogonal functions. Hydrological Sciences Journal 38 (1/2) 33–49.

6. Kang, K.W. ؛Kim J.H. ؛Park C.Y. ؛and Ham K.J. 1993. Evaluation of hydrological forecasting system based on neural network model. In: Proc. 25 th Congress of Int. Assoc. for Hydr. Res. IAHR. Delft. The Netherlands. 257-264.

7. Kisi, O. 2004. River Flow Modelling using artificial neural networks. J. Hydrol. Eng. 9(1).60-63.

8. Mahabir, C.; Hicks, F.E.; and Robinson, Fayek A. 2003. Application of fuzzy logic to forecast seasonal runoff. Hydrol. Process. 17. 3749–3762.

9.Mizumura, K. 1995. Application of fuzzy theory to snowmelt-runoff. In: Kundzewicz, Z.W. Ed. New uncertainty concep ts in hydrology and water resources, Cambridge University Press, New York.

10. Obled, C.; Creutin, J.D. 1986. Some development in the use of empirical orthogonal functions for mapping meteorological fields.

11. Sajikumar, N.; Thandaveswara, B.S. 1999. A nonlinear rainfall runoff model using an artificial neural network. J. hydrol. 216. 32-55.

12. Tawfik, Maha. 2003. Linearity Versus non-linearity in forecasting Nile River flows. Advances in Enginearing Software. 34.515-524.

13. Wang,  W.; Vrijling,  J K.; Van, Gelder.; 2006. Stochastisity, Nonlinearity and Forecasting of Streamflow Processes. Publisher and Distributer: IOS Press, 1013 B G Amsterdam, Netherland.

14. Zealand, C.M.; Burn, D.H.; and Simonovic, S.P. 1999. Short term streamflow forecasting using artificial neural networks. J. hydrol. 214. 32-48.