ارزیابی روش کاربرد EDTA در کاهش ریسک آبشویی سرب به آب‌های زیرزمینی با استفاده از Hordeum bulbosum L.

نوع مقاله: مقاله پژوهشی

نویسندگان

1 استادیار، دانشکده آب و خاک، گروه مرتع و آبخیزداری، دانشگاه زابل

2 بیابان‌زدایی، دانشکده آب و خاک، گروه مرتع و آبخیزداری، دانشگاه زابل

چکیده

مطالعه حاضر به­منظور افزایش کارایی گیاه­استخراجی گونه Hordeum bulbosum L.)جو پیاردار) در خاک­های (بافت خاک لومی رسی) آلوده به سرب بااستفاده از اتیلن دی امین تترا استیک اسید (EDTA) (غلظت 5/1، 5، 10 میلی­مول در کیلوگرم)، تعیین بهترین زمان تیمار و شیوه کاربرد EDTA جهت کاهش خطر آبشویی سرب به آب­های زیرزمینی انجام شد. از خاک­های غیرآلوده بدون EDTA و آلوده بدون EDTA به­عنوان شاهد استفاده گردید. نتایج به­دست آمده نشان داد که در تیمار 5EDTA حداکثر (70/890 میلی­گرم در کیلوگرم در اندام­های زیرزمینی و 65/720 میلی­گرم در کیلوگرم در اندام­های هوایی) میزان برداشت سرب صورت گرفت؛ بنابراین در مرحله دوم تحقیق تیمار 5 میلی­مول در کیلوگرم جهت ارزیابی بهترین زمان برداشت گیاه در دوره­های زمانی 20 روز (رشد رویشی)، 80 روز (مرحله گلدهی) 140 روز (مرحله بذردهی) استفاده شد. نتایج نشان داد که با گذشت زمان، غلظت سرب در بافت­های گیاهی افزایش داشت، اما بین مرحله گلدهی و بذردهی تفاوت معنی­دار وجود نداشت (p‹0/05) و بهترین زمان برداشت گیاه، به­منظور دستیابی به حداکثر برداشت سرب از خاک دوره گلدهی است. در مرحله سوم جهت کاهش خطر آبشویی سرب، غلظت 5 میلی­مول در کیلوگرم در سه روش یک­بار، دوبار متوالی و سه­بار متوالی به خاک اضافه شد. نتایج نشان داد که تحت کاربرد EDTA به­صورت یک­بار، میزان سرب خاک به حداقل رسید. داده­ها نشان داد که حداکثر میزان سرب در اندام­های گیاهی در کاربرد روش یک­بار به­دست آمد، درحالی­که غلظت فلز در اندام­های گیاهی بین روش دوبار و سه­بار متوالی تفاوت قابل ملاحظه­ای وجود نداشت. به­طورکلی، بهینه گیاه­استخراجی گونه H. bulbosum و کاهش خطر آبشویی سرب در کاربرد غلظت 5 میلی­مول در کیلوگرم EDTA با روش یک­باراضافه کردن و برداشت گیاه 80 روز بعد از کاشت به­دست آمد.

کلیدواژه‌ها


عنوان مقاله [English]

Evaluation of EDTA application method to reduce Pb leaching risk into ground waters using Hordeum bulbosum L.

نویسندگان [English]

  • Mahdiyeh Ebrahimi 1
  • Nasrollah Aslinezhad 2
1 Assistant Professor, University of Zabol
2 M. Sc Student of Combating Desertification, University of
چکیده [English]

This study was conducted to increase phytoextraction efficiency of Hordeum bulbosum L. in lead contaminate soil (Loamy Clay) in the EDTA-assisted, Ethylen ediamine tetra acetic acid (1.5, 5, 10 mmol kg−1), assessing optimum of treatment time and method of EDTA application to reduce Pb leaching risk into ground waters. Uncontaminated soil without EDTA (C) and contaminated soil without EDTA (W) used as the controls. The results revealed that the greatest Pb uptake (890.70 mgKg-1 in underground organs and 720.65 mgkg-1 in above ground organs) was observed in 5EDTA treatment. Therefore, 5mmolkg-1 was used in second step for assessing harvest time for 20(Vegetative stage), 80 (Flowering stage) and 140(Seed production) days. Results showed that the concentration of Pb in plant tissues was increased with passage of time, but between flowering stage and seed production there was no significant difference (p‹0/05) and the best harvest time in order to achieve maximum removal of the metal was flowering stage. In third step to reduce leaching risk of Pb-EDTA, 5 mmolkg-1 EDTA in three ways of single, double (two successive) and triple (three successive) were added to the soil. The results showed that under single dosage application, Pb content in the soil reached at its minimum concentration. The data indicated that the maximum Pb concentration in the plant organs was calculated at the single dosage while metal concentration in the plant organs did not vary considerably when double and triple dosage were added. Overall, optimum phytoextraction of H. bulbosum and Pb leaching risk reduction was observed when 5 mmol kg−1 EDTA was added in single dosage, 80 days after the plant cultivation

کلیدواژه‌ها [English]

  • heavy metals
  • EDTA
  • Phytoextraction
  • Hordeum bulbosum L

 

1.Ait Ali, N., M. Pilar Bernal and A. Mohammed. 2004. Tolerance and bioaccumulation of cadmium by Phragmites australis grown in the presence of elevated concentrations of Cadmium, Copper, and Zinc. Aquatic Botany, 80:163–176.

2.Alkorta, I., J. Hernández-Allica, J.M. Becerril, I. Amezaga, I. Albizu, M. Onaindia and C. Garbisu. 2004. Chelate-enhanced phytoremediation of soils polluted with heavy metals. Rev. Environmental Science Biotechnology, 3:55–70.

3.Berry, J.W., D.G. Chappell and R.B. Barnes.1946. Improved Method of Flame Photometry. Ind. Eng. Chem. Anal. Ed.18 (1): 19–24.

4.Black, C.A. 1965. Methods of soil chemical analysis and microbiological properties. Agronomy No. 9. American Society of Agronomy, Madison.

5.Chen, YH., X.D. Li and Z.G. Shen.2004. Leaching and uptake of heavy metals by ten different species of plants during an EDTA Aassisted phytoextraction process. Chemosphere, 57: 187-196.

6.Chiu, K.K., Z.H. Ye and M.H. Wong. 2005 .Enhanced uptake of As, Zn, and Cu by Vetiveria zizanioides and Zea mays using chelating agents. Chemosphere, 60:1365–1375.

7. Day, P. R. 1982. In Methods of soil Analysis, part 2; Page, A. L., et al., Eds.; Agronomy Monograph 91 American Soceity of Agronomy: Madison, WI. pp: 935-951.

8. Du Laing, G., F.M.G. Tack and M.G. Verloo. 2003. Performance of selected destruction methods for the determination of heavy metals in reed plants (Phragmites australis). Analytica Chimica Acta, 497(8): 191–198.

9.Ebrahimi, M.2012. Germination, growth and uptake of heavy metals in Contaminated Soils (Hordeum bulbosum L.). Journal of Rangeland Science, 2(3): 557-565.

10.Evangelou, M.W.H., E. Mathias and A. Schaeffer. 2007. Chelate assisted phytoextraction of heavy metals from soil. Effect, mechanism, toxicity and fate of chelating agents. Chemosphere, 68:989–1003.

11.Fritsch, C., P. Giraudoux, M. Coeurdassier, F. Douay, F. Raoul, C. Pruvot, C. Waterlot, A. de Vaufleury and R. Scheifler. 2010. Spatial distribution of metals in smelterimpacted soils of woody habitats: influence of landscape and soil properties, and risk for wildlife. Chemosphere, 81: 141–155.

12.Grčman, H., S. Velikonja-Bolta, D. Vodnik, B. Kos and D. Lestan. 2001. EDTA enhanced heavy metal phytoextraction: metal accumulation, leaching, and toxicity. Plant and Soil, 235:105–114.

13.Harris, D.C. 2007. Quantitative Chemical Analysis, 7th ed., W. H. Freeman and Compagny, New York.

14.Holleman, A. F and E. Wiberg. 2001. Inorganic Chemistry. San Diego: Academic Press. ISBN 0-12-352651-5.

15.Huang, JW., J. Chen, W.R. Berti and S.D. Cunningham.1997. Phytoremediation of lead-contaminated soils: role of synthetic chelates in lead phytoextraction. Environmental Science and Technology, 31: 800–805.

16.Knight, B., F.J. Zhao, S.P. McGrath and A.G. Shen. 1997. Zinc and cadmium uptake by the hyperaccumulator Thalaspi caerrulescens in contaminated soils and its effect on the concentration and chemical speciation of metals in soil solution. Plant and Soil,197:71-78.

17.Lai, H.Y and Z.S. Chen. 2005. The EDTA effect on phytoextraction of single and combined metalcontaminated soil using Rainbow Pink (Dianthus chinensis). Chemosphere, 60: 1062–1071.

18.Lestan, D., C.L. Luo and X.D. Li. 2008. The use of chelating agents in the remediation of metal-contaminated soils: a review. Environmental Pollution, 156:3–13.

19. Lindsay,W.L  and W.A. Norvell. 1978. Development of DTPA soil test for Zinc, Iron, manganese and copper. Soil Science American Journal, 42: 421-428.

20.Liu, J.N., Q.X. Zhou, T. Sun, L.Q. Ma and Wang, S.2008. Growth responses of three ornamental plants to Cd and Cd–Pb stress and their metal accumulation characteristics. Journal of Hazardous Materials, 151: 261–267.

21-Lombi, E., F.J. Zhao, S.J. Dunham and S.P. McGrath. 2001. Phytoremediation of heavy-metal contaminated soils: natural hyperaccumulation versus chemically enhanced phytoextraction. . Environmental Quality. 30: 1919–1926.

22.Luo, C., Z.G. Shen, X. Li and A.J.M. Baker. 2006. Enhanced phytoextraction of Pb and other metals from artificially contaminated soils through the combined application of EDTA and EDDS. Chemosphere, 63: 1773–1784.

23.Madrid, F., M.S. Liphadzi and M.B. Kirkham.2003. Heavy metal displacement in chelate-irrigated soil during phytoremediation. Journal of Hydrology,272: 107–19.

24.Mattina, M.J., W. Lannucci-Berger, C. Musante and J.C, White. 2003. Concurrent plant uptake of heavy metals and persistent organic pollutants from soil. Journal of Environmental Pollution. 124: 375-378.

25.Mossop, K.F., M.D. Christine, M.U. Allan,  A.S. Charles, A. S and J.H. Stephen. 2009. Effect of EDTA on the fractionation and uptake by Taraxacum officinale of potentially toxic elements in soil from former chemical manufacturing sites. Plant and Soil, 320,117–129.

26.Olsen, S.R and L.E, Sommers.1982. Phosphorus. In: Page, A.L., Miller, R.H., Keeney, D.R. (Eds.), Methods of Soil Analysis, Part 2. Chemical and Microbiological Properties, second ed., Agronomy No. 9. ASA, SSSA, Madison, WI, pp. 403–430.

27.Rhoades, J.D. 1996. Salinity: Electrical conductivity and total dissolved solids. In: Methods of soil analysis, American Society of Agronomy, pp. 417-435 (Page, A.L., Ed). Madison, WI.

28.Salido, A. L., K.L, Hasty, J.M. Lim and D.J. Butcher. 2003. Phytoremediation of arsenic and lead in contaminated soil using Chinese brake ferns (Pteris vittata) and Indian mustard (Brassica juncea). Journal of Phytoremediation, 2(5): 89- 103.

29.Sarkar, D., S.A. Syam, K.M.S. Sumathi and D. Rupali. 2008. Chelant-aided enhancement of lead mobilization in residential soils. Environmental Pollution, 156:1139–1148.

30.Shen, Z.G., X.D. Li, C.C. Wang, H.M. Chen and H. Chua. 2002. Lead phytoextraction from contaminated soils with high-biomass plant species. Environmental Quality,31: 1893-1900.

31. Shibata, M., T. Konno, R. Akaike,  Y. Xu, R.F. Shen and J.F. Ma. 2007. Phytoremediation of Pb contaminated soil with polymercoated EDTA. Plant and Soil, 290:201–208.

32.Tandy, S., K. Bossart, R. Mueller, J. Ritschel, L. Hauser, R. Schulin and B. Nowack. 2004. Extraction of heavy metals from soils using biodegradable chelating agents. Environmental Science and Technology, 38: 937–944.

33.Tang, J., T.F. Xiao, S.J. Wang, J.L. Lei, M.Z. Zhang, Y.Y. Gong, H.J. Li, Z.P. Ning and L.B. He. 2009. High cadmium concentrations in areas with endemic fluorosis: a serious hidden toxin. Chemosphere, 76: 300–305.

34.Thomas, G.W.1996. Soil pH and soil acidity. P 475-490. In: Sparks et al. (eds.) Methods of soil analysis, part 3. Agron. Mongr. 9. 2nd ed. ASA and SSSA, Madison, WI.

35.Turgut, C., M. Katie and J.C. Teresa. 2005. The effect of EDTA on Helianthus annuus uptake, selectivity, and translocation of heavy metals when grown in Ohio, New Mexico and Colombia soils. Chemosphere, 58: 1087–1095.

36.Turgut, C., M.K. Pepe and T.J. Curight,T.J. 2004. The effect of EDTA and citric acid on phytoremediation of Cd, Cr, and Ni from soil using Helianthus annuus. Journal of Environmental. Pollution, 131: 147-154.

37.Vassil, A.D., Y. Kapulnik, I. Raskin and D. Salt. 1998. The role of EDTA in Pb transport and accumulation by Indian mustard. Plant Physiology, 117: 447-453.

38.Wang, X., Y. Wang, Q. Mahmood, E. Islam, X. Jin, T. Li, X. Yang and L. Dan. 2009. The effect of EDDS addition on the phytoextraction efficiency from Pb contaminated soil by Sedum alfredii Hance. Journal of Hazardous Materials, 168:530–535.

39.Wilkins, D.A. 1978. The measurement of tolerance to edaphic factors by means of root growth. The New Phytologist. 80: 623-633.

40.Wu, J., F.C. Hua and S.D. Cunningham. 1999. Chelate-assisted Pb phytoextraction:Pb avalibility, uptake and translocation constraints. Environmental Science and Technology. 33: 1898-1904.

41. Wu, LH., Y.M. Luo, X.R. Xing and P. Christie. 2004. EDTA-enhanced phytoremediation of heavy metal contaminated soil with Indian mustard and associated potential leaching risk. Agriculture Ecosystems Environment, 102:307–318.

42. Xu, J., H.X. Yin and Li, X. 2009. Protective effects of proline against cadmium toxicity in micropropagated hyperaccumulator, Solanum nigrum L. Plant Cell Reports, 28: 325-333.

43.Zaier, H., G. Tahar, B.R. Kilani, L. Abdelbasset, R. Salwa and J. Fatima. 2010. Effects of EDTA on phytoextraction of heavy metals (Zn, Mn and Pb) from sludge-amended soil with Brassica napus. Bioresource Technology, 101: 3978–3983.

44.Zayed, A., S. Gowthaman and N. Terry. 1998. Phytoaccumulation of trace elements by wetland plants. I. Duckweed. Environmental Quality, 27: 715–721.

45.Zhuang, P., Z.H. Ye, C.Y. Lan, Z.W. Xie and W.S. Shu. 2005. Chemically assisted phytoextraction of heavy metal contaminated soils using Three Plant Species. Plant and Soil, 276: 153-162.