تعیین شدت آشفتگی در کانال قوسی 180 درجه تند با استفاده از داده‌های آزمایشگاهی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 استادیار گروه مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه خلیج فارس، بوشهر

2 کارشناس ارشد سازه‌های هیدرولیکی، گروه مهندسی عمران، دانشگاه خلیج فارس،

چکیده

آشفتگی یکی از مهم‌ترین مشخصه‌های الگوی جریان در قوس است که بسیاری از فرآیندهای رودخانه مانند فرسایش، انتقال رسوب، مورفولوژی بستر و شکل کانال‌های طبیعی را تحت تاثیر قرار می‌دهد. به منظور تعیین شدت آشفتگی در کانال‌های قوسی، در این مقاله با استفاده از سرعت‌سنج سه بعدی Vectrino به برداشت مولفه‌های سرعت جریان در مقاطع مختلف کانال قوسی 180 درجه تند (نسبت شعاع مرکزی به عرض کانال برابر با 2، با بستر صلب و تامین زبری) واقع در آزمایشگاه هیدرولیک دانشگاه خلیج فارس پرداخته شده است. در این مقاله، شدت‌های آشفتگی جریان به صورت RMS در راستاها و اعماق مختلف محاسبه، مقایسه و مورد تجزیه و تحلیل قرار گرفته است. نتایج این تحقیق بیانگر این است که در لایه نزدیک به بستر، بیشینه شدت آشفتگی عرضی و عمقی جریان به ترتیب برابر با 70 و 25 درصد بیشینه شدت آشفتگی در راستای طولی می‌باشد. علاوه بر این، شدت آشفتگی در اعماق مختلف نیز مقایسه شد که نشان دهنده‌ی کاهش 25 درصدی شدت آشفتگی طولی با افزایش عمق جریان از کف کانال به سمت سطح آب می‌باشد.

کلیدواژه‌ها


عنوان مقاله [English]

Determining Turbulence Intensity in a 180 Degree Sharp Bend Channel Using Experimental Data

نویسندگان [English]

  • Mohammad vaghefi 1
  • maryam akbari 2
1
2
چکیده [English]

Turbulence is one of the most important features of the flow pattern in a bend which influences a lot of processes occurred in rivers including erosion, sediment transport, bed morphology, and shape of natural channels. In this study, in order to determine the turbulence intensity through bend channels, the flow velocity components at different sections of the 180 degree sharp bend channel (the ratio of central radius to the channel width equals 2, with rigid bed and roughness provided) were collected using Vectrino 3D velocimeter in the hydraulic laboratory of Persian Gulf University. In this paper, the turbulence intensities were measured, compared and analyzed in RMS form in various depths and directions. The results of the experiment indicates that the maximum turbulence intensity along width and depth at the layer near the bed were 70 and 25% of the maximum turbulence intensity along the length, respectively. Moreover, the turbulence intensities were compared at various depths and the results demonstrated a 25% decrease in the longitudinal turbulence intensity upon distancing from the bed to the water surface.

کلیدواژه‌ها [English]

  • Turbulent Flow
  • 3D Velocities
  • Turbulence Intensity
  • 180 Degree Sharp Bend
  • Vectrino
صفرزاده گندشمین، ا.، س. ع. ا. صالحی نیشابوری، ا. ر. زراتی و م. قدسیان. 1389. مطالعه توزیع تنش برشی جداره در جریان یکنواخت کانال با استفاده از ابزار دقیق و شبیه‌سازی عددی. مجله هیدرولیک، سال پنجم، شماره 1، ص 51-70.
کرباسی، م.، م. ح. امید و ج. فرهودی. 1390. مطالعه آزمایشگاهی مشخصات سه‌بعدی جریان بر روی کلاسترها. فصلنامه مهندسی آبیاری و آب، سال دوم، شماره 5، ص 75-85.
موسوی نائینی، س. ع.، م. واقفی و م. قدسیان. 1391. بررسی آزمایشگاهی تاثیر شعاع انحنا بر الگوی جریان پیرامون آبشکن تی شکل در قوس 90 درجه با بستر صلب. مجله آب و فاضلاب، سال بیست و سوم، شماره 1، ص 15-23.
واقفی، م.، م. قدسیان و س. ع. ا. صالحی نیشابوری. 1387. مطالعه آزمایشگاهی الگوی جریان سه‌بعدی و آبشستگی در قوس 90 درجه. مجله هیدرولیک، سال سوم، شماره 3، ص 41-57.
مظفری، ج.، ا. امیری تکلدانی و م. خادمی. 1390. ارزیابی روش های مختلف تعیین تنش برشی بستر در پیچ تند کانال با توپوگرافی بستر توسعه یافته. مجله هیدرولیک، سال ششم، شماره 1، ص 1-17.
Belcher, B. J. and J. F. Fox. 2009. Laboratory measurements of 3-D flow patterns and turbulence in straight open channel with rough bed. Journal of Hydraulic Research, 47(5): 685-688.
Blanckaert, K. and W. H. Graf. 2004. Momentum transport in sharp open-channel bends. Journal of Hydraulic Engineering, 130(3): 186-198.
Blanckaert, K. and H. J. De Vriend. 2005. Turbulence characteristics in sharp open-channel bends. Physics of Fluids, 17(5): 055102-1-055102-15.
Czernuszenko, W. and A. Rylov. 2002. Modeling of three-dimensional velocity field in open channel flows. Journal of Hydraulic Research, 40(2): 135-143.
Ippen, A. T. and P. A. Drinker. 1962. Boundary shear stresses in curved trapezoidal channels. Journal of the Hydraulics Division, 87(6): 143-179.
Leschziner, M. A. and W. Rodi. 1979. Calculation of strongly curved open channel flow. Journal of Hydraulic Division, 105(10): 1297-1314.
Lien, H. C., T. Y. Hsieh, J. C. Yang and K. C. Yeh. 1999. Bend-flow simulation using 2D depth-averaged model. Journal of Hydraulic Engineering, 125(10): 1097-1108.
Nortek, A. S. 2009. Vectrino velocimeter user guide. Nortek AS, Vangkroken, Norway.
Nouh, M. and R. D. Townsend. 1979. Shear-stress distribution in stable channel bends. Journal of the Hydraulics Division, 105(10): 1233-1245.
Prandtl, L. 1963. The essentials of fluid dynamics. Blackie & So, London, United Kingdom.
Rodríguez, J. F. and M. H. García. 2008. Laboratory measurements of 3-D flow patterns and turbulence in straight open channel with rough bed. Journal of Hydraulic Research, 46, (4): 454-465.
Rozovskii, I. L. 1957. Flow of water in bends of open channels. Published by the academy of Sci. Ukrainian SSR, Kiev.
Shukry, A. 1950. Flow around bends in stable channels. Transactions of the American Society of Civil Engineers, 115(1): 751-779.
Townsend, A. A. 1956. The structure of turbulent shear flow. Cambridge university press, London, United Kingdom.
Vaghefi, M., M. Akbari and A.R. Fiouz. 2014. Experimental investigation on bed shear stress distribution in a 180 degree sharp bend by using Depth-Averaged method. International Journal of Scientific Engineering and Technology, 3(5): 675-679.
Vaghefi, M., M. Akbari and A.R. Fiouz. 2015. An experimental study of mean and turbulent flow in a 180 degree sharp open channel bend: Secondary flow and bed shear stress. KSCE Journal of Civil Engineering, 0(0): 1-12 (Published Online).
Vaghefi, M., M. Akbari and A.R. Fiouz. 2015. Experimental Investigation of the Three-dimensional Flow Velocity Components in a 180 Degree Sharp Bend. World Applied Programming, 5(9): 125-131.
Vaghefi, M., M. Akbari and A.R. Fiouz. 2015. Experimental study of turbulence kinetic energy and velocity fluctuation distributions in a 180 degree sharp bend. 10th International Congress on Civil Engineering, Tabriz, Iran.
Wang, Z. Q. and N. S. Cheng. 2005. Secondary flows over artificial bed strips. Advances in Water Resources, 28(5): 441-450.