اربرد مدلهای ناپارامتریک CART و M5’ در محاسبه عمق آبشستگی اطراف پایههای پل

نوع مقاله: مقاله پژوهشی

نویسنده

استادیار، گروه مهندسی آب دانشگاه کشاورزی و منابع طبیعی رامین خوزستان

چکیده

آبشستگی اطراف پایههای پل یکی از مهمترین زمینههای مطالعاتی علم هیدرولیک و مهندسی رودخانه به حساب میآید که دلیل این امر خسارات جانی و مالی است که در اثر شکست پل ممکن است حاصل شود. تاکنون معادلات متعددی در زمینه برآورد آبشستگی در اطراف پایههای پل ارائه شده است ولی با توجه به پیچیدگی این پدیده، روابط موجود نتوانستهاند عمق آبشستگی را با دقت مناسب شبیهسازی کنند. بر همین اساس در این تحقیق از دو مدل ناپارامتریک CART و M5’ استفاده گردید که دارای الگوریتم درختی بوده و فضای مساله را به شاخههای متعدد تقسیمبندی میکنند. نتیجه مدل درختی CART به ازای هر شاخه خاص یک کمیت عددی بوده، در حالی‌که مدل درختی M5’ معادلاتی را جهت تخمین عمق آبشستگی در شاخههای مختلف ارائه میدهد. در این تحقیق از عدد فرود مختلط ذره، ضریب شکل پایه و نسبت عمق جریان به عرض پایه به عنوان ورودی استفاده گردید که در هر دو مدل ضریب شکل پایه به عنوان اولین معیار تصمیمگیری انتخاب گردید که نشاندهنده اهمیت این پارامتر بر روی عمق آبشستگی بوده و با معادلات ارائه شده در این زمینه مطابقت دارد. نتایج تحلیلهای آماری بر روی مدلهای پیشنهادی و معادلات موجود نشان داد که مدلهای ناپارامتریک ارائه شده با دقت بهتری میتوانند عمق آبشستگی را محاسبه نمایند. از جمله تحلیلهای آماری مورد استفاده نسبت مقدار محاسباتی به مقدار واقعی بوده که نشاندهنده دقت بیش از 65% برای مدلهای درختی در مقایسه با دقت کمتر از 50% جهت معادلات سایر محققین میباشد. همین نتیجه در مورد مقایسه مقادیر RMSE و R2 نیز مشاهده گردید. در نهایت مدل M5’ با توجه به ساختار سادهتر نسبت به مدل CART به عنوان مدل مناسب جهت برآورد عمق آبشستگی در اطراف پایههای پل معرفی گردید. همچنین آنالیز حساسیت صورت گرفته بر روی مدل M5’ نشان داد که قطر پایه، عمق و سرعت جریان به ترتیب بیشترین تاثیر را بر روی عمق آبشستگی دارند.

کلیدواژه‌ها


عنوان مقاله [English]

Nonparametric CART and M5’ Methods Application on Bridge Piers Scour Depth Computation

نویسنده [English]

  • Javad Zahiri
Assistant Professor, Department of Water Engineering, Khouzestan Ramin Agriculture and Natural Resources University
چکیده [English]

Bridge pier scouring is one of the most important fields in hydraulics and river engineering, especially due to loss of life and property caused by bridge failure. Many experimental equations have been previously proposed to evaluate bridge pier scouring, most of which could not accurately simulate scoring depth because of complexity of the phenomenon. The present study, in this regard, compares two nonparametric CART and M5’ models having tree-structure and dividing the problem space into several branches. CART model offers a scalar quantity for each branch while M5’ model could provide equations as a result of bridge scour for different branches. Mixture densimetric particle Froude number, pier shape factor and ratio of flow depth to pier width were taken into account as input parameters in this research. Pier shape factor has been chosen as the first decision variable in both models that reflects the importance of this parameter on scour depth, corresponded to previous equations from the literature. Statistical analysis on proposed models and previous equations indicated that the nonparametric models could predict scour depth around piers with more precision. Discrepancy ratio was one of the statistical tests used in this research, indicating more than 65% accuracy for the tree-based models against other equations having less than 50% accuracy. Same results were observed from other statistical tests such as RMSE and R2. Finally, in comparison with CART model, M5’ was recommended for estimating of scour depth according to its simple structure. Also based on sensitivity analysis on M5’ model, pier width, flow depth and velocity had the highest impact on scour depth, respectively.
 

کلیدواژه‌ها [English]

  • Keywords: Scour depth
  • Sensitivity analysis
  • Tree models
  • CART
  • M5’

جباری، ا.، و م. صمدی. 1392. کاربرد الگوریتم M5 در پیشبینی عمق آبشستگی در پایین‌دست سرریزها. طرح تحقیقات کاربردی، شرکت سهامی مدیریت منابع آب ایران.

Arneson, L. A., L. W. Zevenbergen, P. F. Lagasse and P. E Clopper. 2012. Evaluating Scour at Bridges: Federal Highway Administration Hydraulic Engineering Circular No. 18: Federal Highway Administration Publication No. FHWA-HIF-12-003 HEC-18, 340 p.

Bateni, S. M, D. S. Jeng and B. W. Melville. 2007. Bayesian Neural Networks for Prediction of Equilibrium and Time-dependent Scour Depth around Bridge Piers. Advances in Engineering Software, 38 (2): 102-111.

Bhattacharya, B. and D. P. Solomatine. 2006. Machine Learning in Sedimentation Modeling. Neural Networks Journal, 19: 208–214.

Breusers, H. N. C. and A. J. Raudkivi. 1991. Scouring In Hydraulic Structures Design Manual. International Association of Hydraulic Research, Balkema, 143 p.

Etemad-Shahidi, A. and J. Mahjoobi. 2009. Comparison between M5΄ Model Tree and Neural Networks for prediction of significant wave height. Journal of Ocean Engineering. 36(15-16): 1175-1181.

Etemad-Shahidi, A. and N. Ghaemi, 2011. Model Tree Approach for Prediction of Pile Groups Scour due to Waves. Ocean Engineering, 38: 1522–1527.

Etemad-Shahidi, A. and M. Taghipour. 2012. Predicting Longitudinal Dispersion Coefficient in Natural Streams Using M5′ Model Tree. Journal of Hydraulic Engineering, 138(6): 542-554.

Firat, M. and M. Gungor. 2009. Generalized Regression Neural Networks and Feed Forward Neural Networks for Prediction of Scour around Bridge Piers. Advances in Engineering Software. 40 (8):731-737.

Gong, L., X. Chong-yu, D. Chen, S. Halldin , and Y. D. Chen. 2006. Sensitivity of the Penman–Monteith Reference Evapotranspiration to Key Climatic Variables in the Changjiang (Yangtze River) Basin. Journal of Hydrology, 329:620-629.

Gutiérrez AG, Schnabel S and Lavado Contador JF, 2009. Using and Comparing Two Nonparametric Methods (CART and MARS) to Model the Potential Distribution of Gullies. Ecological Modeling 220(24): 3630-3637.

Hager, W. H. and G. Oliveto. 2002. Shields’ Entrainment Criterion in Bridge Piers. Journal of Hydraulic Engineering, 128(5): 538-542.

Lim, S. Y. and N. S. Cheng. 1998. Prediction of Live-Bed Scour at Bridge Abutments. Journal of Hydraulic Engineering, 124(6): 635-638.

Mahjoobi J, Sabzianpoor A and Jabbari E, 2010. Application of Meta-Heuristic Models for Local Scour Evaluation, Pp. 389-397, Ninth International Conference on Computing Anticipatory Systems. AIP Conference Proceedings. 3-8 August, Liege, Belgium.

Melville, B. W. 1997. Pier and Abutment Scour: Integrated approach. Journal of Hydraulic Engineering, 123(2):125–136.

Melville, B. W and A.J. Sutherland. 1988. Design Method for Local Scour at Bridge Piers. American Society of Civil Engineers, Journal of Hydraulic Division, 114(10).

Melville, B. W. and A. J. Raudkivi. 1996. Effects of Foundation Geometry on Bridge Pier Scour. Journal of Hydraulic Engineering, 122(4): 203-209.

Melville, B. W. and S. E. Coleman. 2000. Bridge Scour: Highlands Ranch, Colo., Water Resources Publications, 550 p.

Mia, M. F. and H. Nago. 2003. Design Method of Time-Dependent Local Scour at Circular Bridge Pier. Journal of Hydraulic Engineering, 129(6): 420–427.

Mueller, D. S. and C. R. Wagner. 2005. Field Observations and Evaluations of Streambed Scour at Bridges. US Department of Transportation, Federal Highway Admin., Turner-Fairbank Highway Research Center, McLean, Virginia.

Quinlan, J. R.1992. Learning with Continuous Classes. Proceedings of AI’92, World Scientific, pp.343–348.

Richardson, E. V. and S. R. Davis. 1995. Evaluating Scour at Bridges (3rd edition.). Federal Highway Administration, FHWA‑IP-90-017 HEC-18, 204 p.

Sheppard, D. M., B. Melville and H. Demir. 2014. Evaluation of Existing Equations for Local Scour at Bridge Piers. Journal of Hydraulic Engineering, 140(1): 14–23.

Wang, Y. and I. H. Witten. 1997. Induction of Model Trees for predicting Continuous Classes. Proceedings of the Poster Papers of the European Conference on Machine Learning, University of Economics, Faculty of Informatics and Statistics, Prague.