تدوین سیاست‌های بهره‌برداری بهینه از سامانه مخازن در حوضه آبریز گرگان‌رود با استفاده از الگوریتم جستجوی گرگ (WSA)

نوع مقاله: مقاله پژوهشی

نویسندگان

1 کارشناسی ارشد مهندسی منابع آب، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان

2 استادیار بخش مهندسی آب، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، r

3 استادیار، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه شهید باهنر کرمان، کرمان، ایران

چکیده

در چند دهه اخیر روش‌های تکامل‌گرا کاربردهای موفقیت‌آمیز زیادی در مسائل مختلف مهندسی و مدیریتی منابع آب و به ‌ویژه در بهره‌برداری بهینه از مخازن داشته‌اند. در این پژوهش از الگوریتم فراابتکاری جستجوی گرگ (WSA[1]) برای یافتن استراتژی‌های تخصیص بهینه منابع آب در سیستم دو مخزنه سدهای گلستان و وشمگیر واقع در حوضه آبریز گرگان‌رود (شمال ایران)، برای یک دوره پنج ساله (از سال آبی 87-86 تا 91-90) استفاده شده است. پس از اطمینان از درستی عملکرد الگوریتم WSA با استفاده از چندین تابع محک استاندارد، مدلی برای تخصیص بهینه سیستم مخازن گلستان و وشمگیر توسعه داده شد. همچنین نتایج حاصل از الگوریتم مورد بررسی با نتایج روش‌ شناخته شده الگوریتم ژنتیک (GA[2]) مقایسه شده است. تابع هدف در مدل مورد استفاده به صورت کمینه­سازی کل کمبود در طول دوره آماری تعریف شده است. برای بررسی عملکرد الگوریتم‌های مورد بررسی در تخصیص بهینه از سیستم مخازن، از شاخص‌های عملکرد قابلیت اعتماد زمانی، حجمی و آسیب‌پذیری استفاده شده است. الگوریتم‌های WSA و GA به ترتیب قادر به تأمین 34/95 و 07/87 درصد از نیازهای پایین­دست سد گلستان و همچنین 8/93 و 59/87 درصد از نیازهای سد وشمگیر بودند. قابلیت اعتماد زمانی (9/0= α) برای الگوریتم‌های WSA و GA به ترتیب برابر 67/81 و 67/26 درصد برای سد گلستان و 33/83 و 33/38 درصد برای سد وشمگیر به‌دست آمده است. نتایج به‌دست آمده حاکی از عملکرد بالای الگوریتم WSA در مقایسه با دیگر الگوریتم‌ مورد بررسی در تخصیص بهینه سیستم مخازن می‌باشد.



 

کلیدواژه‌ها


عنوان مقاله [English]

Codification of optimal operation policies of reservoirs in the Gorganrood basin using Wolf Search Algorithm (WSA)

نویسندگان [English]

  • Saeed Akbarifard 1
  • kourosh qaderi 2
  • Bahram Bakhtiari 3
1 M. Sc. in Water Resources Engineering, Department of Water Engineering, Faculty of Agriculture, Shahid Bahonar University of Kerman, Kerman, Iran
2 Assistant Prof. Department of Water Engineering , Shahid Bahonar Univercity of Kerman, Kerman, Iran. (Corresponding Autho
3 Assis., Prof., Department of Water Engineering, Faculty of Agriculture, Shahid Bahonar University of Kerman,
چکیده [English]

In recent decades, Evolutionary algorithms have been applied successfully in various water resource engineering and management issue especially in optimal operation of reservoirs. In this research, a metaheuristic algorithm called Wolf Search Algorithm (WSA), has been developed in MATLAB software, with the purpose of optimal allocation strategies of a Multi-reservoirs system (Golestan and Voshmgir dams) located at Gorganrood Basin (North of Iran), for a five year period (from 2007-2008 to 2011-2012). At first, the performance of the developed model was investigated through several standard test functions. Next, the developed model is applied for monthly allocation of Golestan and Voshmgir reservoirs system. The results of the developed model were compared with Genetic Algorithm (GA). The objective function was defined as the “minimization of the total deficit for the study period”. In order to performance evaluation of the investigated Algorithms, two criteria of reliability (temporal and volume) and vulnerability have been used. The WSA and GA were capable to supply 95.37 and 87.07 percent of Golestan dam water demand, respectively. For the Voshmgir dam, the mentioned models could supply 93.8 and 87.59 percent of water demand, in same order. The temporal reliability (α=0.9) for WSA and GA models, was obtained 81.67 and 26.67 percent for Golestan dam and 83.33 and 38.33 percent for Voshmgir dam, respectively, revealed that the WSA was superior in optimal allocation of Multi-reservoirs system.
 

کلیدواژه‌ها [English]

  • Genetic Algorithm
  • Golestan Dam
  • Gorganrood basin
  • Optimal allocation
  • Voshmgir Dam
  • Wolf Search Algorithm

اطلس منابع آب ایران (1387) گزارش مطالعات منابع آب حوزه رودخانه‌های قره‌سو و گرگان‌رود. آب منطقه‌ای استان گلستان.

شفیعی، م.، ا. بزرگ حداد، و ع. افشار. 1386. بررسی ساختارهای جدید از الگوریتم ژنتیک در بهینه­سازی بهره‌برداری از مخازن. مجله فناوری و آموزش، سال اول، جلد اول، شماره 3، ص 117-122.

قادری، ک.، آ. زلقی و ب. بختیاری. 1393. بهینه‌سازی بهره‌برداری از سیستم چند مخزنی با استفاده از الگوریتم تکامل رقابتی جوامع(SCE) (مطالعه موردی: حوضه کرخه). مجله مدیریت آب و آبیاری، دوره 4، شماره 2، ص 215-228.

مفتاح هلقی، م.، ا. ا. دهقانی.، ا. مساعدی و ح.ر. اسلامی. 1390. تعیین کمبود حجم بهیه مخزن سد وشمگیر در سیستم بهره‌بردری چند سدی. مجله پژوهش‌های حفاظت آب و خاک، جلد هجدهم، شماره 1، ص 215-230.

نجفی، م. ‌ر.، ج. هاشم پور و م. خیاط خلقی. 1384. بهره‌برداری بهینه از مخزن با استفاده از مدل برنامه‌ریزی خطی و کاربرد آن در سد وشمگیر. مجله علوم کشاورزی و منابع طبیعی، سال دوازدهم، شماره 5، ص 27-35.

نوروزی. ب.، غ. ع. بارانی.، م. مفتاح هلقی و ا. ا. دهقانی. 1390. بهینه‌سازی بهره‌برداری از یک سیستم چند مخزنه به روش الگوریتم ژنتیک چند جمعیتی مطالعه موردی (سدهای گلستان و وشمگیر). مجله پژوهش‌های حفاظت آب و خاک، جلد هجدهم، شماره 4، ص 43-62.

Afshar, M. H. and I. Motaei. 2011. Constrained Big Bang-Big Crunch Algorithm for optimal solution of large scale reservoir operation problem. International Journal of Optimization in Civil Engineering, 2: 357-375.

Ajibola, A. S. and A. O. Adewumi. 2014. Review of Population Based Metahueristics in Multi-objective Optimization Problems. Int'l Journal of Computing, Communications & Instrumentation Engg, 1(1): 126-128.

Baltar, A. M. and D. G. Fontane. 2008. Use of multi-objective particle swarm optimization in water resources management. Journal of Water Resource Planning and Management, 134(3): 265-275.

Chang, J. X., Q. Huang and Y. M. Wang. 2005. Genetic algorithms for optimal reservoir dispatching. Journal of Water Resources Management, 19:321-331.

Cheng, M. Y. and D. Prayogo. 2014. Symbiotic Organisms Search: A new metaheuristic optimization algorithm. Journal of Computers & Structures, 139: 98-112.

Esat, V. and M. J. Hall. 1994. Water resources system optimization using genetic algorithms hydro informatics. Processes Its International Conference on Hydro informatics, Balkema, Rotterdam, The Netherlands, 225-231.

Fallah-Mehdipour, E., O. Bozorg Haddad and M.A. Marino. 2013. Extraction of Optimal Operation Rules in an Aquifer-Dam System: Genetic Programming Approach. Journal of Irrigation and Drainage Engineering, 139:872-879.

Hashimoto, T., J. R. Stedinger and D. P. Loucks. 1982. Reliability, resilience, and vulnerability criteria for water resource system performance evaluation. Water Resources Research, 18(1): 14-20.

Labadie, J. W. 2004. Optimal operation of multi-reservoir system: State of the art review. Journal of Water Resources Planning and Management, 130(2): 93-111.

Kumar, D. N. and M. J. Reddy. 2006. Ant Colony Optimization for Multi-Purpose Reservoir Operation. Journal of Water Resources Management, 20(6): 879-898.

Oliveira, R. and D. P. Loucks. 1997. Operating rules for multi-reservoir system. Journal of Water Resources Research, 33(4): 839-852.

Pradhan, S. N. and U. K. Tripathy. 2013. Optimization of the operating policy of the multipurpose Hirakud reservoir by Genetic Algorithm. American Journal of Engineering Research, 2(11): 260-266.

Reddy, M. J. and D. N. Kumar. 2007. Multi-objective particle swarm optimization for generating optimal trade-offs in reservoir operation. Hydrological Processes, 21: 2897-2909.

Sonaliya, S. and T. M. V. Suryanarayana. 2014. Optimal Reservoir Operation Using Genetic Algorithm: A Case Study of Ukai Reservoir Project. International Journal of Innovative Research in Science Engineering and Technology, 3(6): 13681-13687.

Tang, R., S. Fong, X. S. Yang and S. Deb. 2012. Wolf search algorithm with ephemeral memory. In Digital Information Management (ICDIM). Seventh International Conferenceon, pages 165–172.

Wardlaw, R. and M. Sharif. 1999. Evaluation of genetic algorithms for optimal reservoir system operation. Journal of Water Resource Planning and Management, 125(1): 25-33.