برآورد هیدروگراف رواناب در حوضه فاقد آمار بدون استفاده از داده های پوشش خاک و کاربری اراضی

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان،

2 گروه مهندسی آب، دانشگاه علوم کشاورزی و منابع طبیعی گرگان

چکیده

مدل SCS یکی از مهم‌ترین مدل‌های برآورد هیدروگراف سیلاب در حوضه های فاقد آمار است و نیازمند داده‌های پوشش گیاهی، کاربری اراضی، ویژگی‌های فیزیوگرافی و آگاهی از وضعیت رطوبت پیشین سطح حوضه می‌باشد اما در حوضه‌هایی که دارای این داده‌ها نیستند استفاده از این مدل با محدودیت مواجه است. در تحقیق حاضر تلاش شده است تا رابطه پیشنهادی بین زمان تأخیر و زمان تز و برآورد زمان تمرکز بر مبنای برآورد سرعت سیلاب در زمان اوج به عنوان راه حلی برای غلبه بر این محدودیت مورد بررسی قرار گیرد. نتایج مدل پیشنهادی با نتایج مدل متداول SCS با در نظر گرفتن چهار رویداد بارش-رواناب در حوضه آبریز امامه با استفاده از معیارهای درصد خطا در برآورد حجم رواناب (PEV)، درصد خطا در برآورد دبی اوج رواناب (PEP)، درصد خطا در برآورد زمان رسیدن به دبی اوج رواناب (PETP) و ریشه میانگین مربعات خطا (RMSE)  مقایسه گردید. نتایج نشان می‌دهد مقادیر میانگین PEV، PEP، PETP و RMSE برای مدل SCS - مدل پیشنهادی به ترتیب (35/6-)-(45/6-)، (97/0)-(38/48-)، (38/27)-(08/46)، و (4/1)-(55/2) می‌باشد. هر دو مدل تمایل به بیش برآوردی حجم رواناب و کم برآوردی زمان رسیدن به اوج دارند در حالیکه مدل متداول SCS میل به کم برآوردی و مدل پیشنهادی میل به بیش برآوردی دبی اوج دارند. همچنین مقایسه  RMSE در کنار سایر معیارها نشان می‌دهد در صورت عدم دسترسی به داده‌های مورد نیاز مدل متداول SCS ، مدل پیشنهادی می‌تواند به طور نسبی تخمین قابل پذیرشی از هیدروگراف رواناب ارایه دهد

کلیدواژه‌ها


عنوان مقاله [English]

Estimation of Surface Runoff Hydrograph in Ungauged Basin without Land Cover and Land Use Data

نویسندگان [English]

  • Meysam Salarijazi 1
  • Khalil Ghorbani 1
  • Mohammad Abodolhosseini 2
1 Assistant Professor, Department of Water Engineering, Gorgan University of Agricultural Sciences and Natural Resources, Gorgan, Iran
چکیده [English]

The SCS model is one of most important proposed models for estimation of flood hydrograph in ungauged basins and need to land cover, land use, physiographical properties and antecedent moisture data but using this model is limited for basins with no access to these data. In this study, the lag time based on proposed relation between lag time and time of concentration and estimation of time of concentration based on velocity of flood peak is investigated to overcome to this limitation. The results of proposed model are compared with traditional SCS model in four rainfall-runoff events in Amameh basin using percentage error in volume (PEV), percentage error in peak (PEP), percentage error in time to peak (PETP), and root mean square error (RMSE). The results show the mean of PEV, PEP, PETP and RMSE for SCS-Proposed models are (-6.35)-(-6.45), (0.97)-(-48.31), (27.38)-(56.08) and (1.4)-(2.55) respectively. Both models tend to overestimation of runoff volume and underestimation of time to peak while conventional SCS tend to underestimate and proposed model tend to overestimate flood peak. Also, comparisons of RMSE beside other criteria indicate that with lack of required data for SCS model, the proposed model can present relatively estimation of runoff hydrograph acceptable.

کلیدواژه‌ها [English]

  • Keywords: SCS model
  • flood
  • Ungauged Basin
  • lag time
  • Time of Concentration

 

منابع:

سبزواری، ت.، ر.  اردکانیان، ا. شمسایی، ع. طالبی. 1388. تخمین آب نگار سیلاب حوضه های آبخیز بدون آمار با استفاده از شبیه سازی HEC-HMS و سامانه اطلاعات جغرافیایی (GIS). (مطالعه موردی: حوضه آبخیز کسیلیان). مهندسی منابع آب، شماره 4، صفحه 11-1

صادقی، س. ح. ر.، م. مهدوی، س. ل. رضوی. 1387. واسنجی ضریب شاخص حداکثر ذخیره و شماره منحنی مدل  SCS در حوزه های آبخیز امامه، کسیلیان، درجزین و خانمیرزا. مجله علوم و مهندسی آبخیزداری ایران. شماره 4، صفحه 24-12.

ر. فضل اولی. 1387.، مدل شبیه سازی بارش –رواناب با استفاده از شاخص بارش پیشین، پایان نامه دکتری، دانشگاه شهید چمران اهواز،254 صفحه

کرکوتی، ع.، م. نظریها،  ا.  باغوند،  ب. جعفری سلیم،  ع. کرباسیو ع. وثوق.  1389. برآورد مقدار سیلاب حداکثر به روشهای مشاهده ای ، کریگر و SCS مطالعه موردی: رودخانه قره سو در کرمانشاه. محیط شناسی، شماره 55. صفحه 110-99.

ملکی نژاد، ح.، م. کوثری. 1387. تجزیه و تحلیل حساسیت و بررسی نسبی اهمیت عوامل موثر بر دبی اوج در روش شماره منحنی. مجله علوم و مهندسی آبخیزداری ایران. شماره 5، صفحه 40-31.

نوری، ف.، ج. بهمنش،  ب. محمدنژاد،   ح. رضایی. 1391. ارزیابی مدل WMS/HEC-HMS در پیش بینی سیلاب حوضه آب ریز قروه. پژوهش های حفاظت آب و خاک (علوم کشاورزی و منابع طبیعی). شماره 4، 210-201.

 
 
 
 
 
 
 
 
Adib, A., M. Salarijazi, M. Vaghefi, M. M. Shooshtari, and A. M. Akhondali. 2010. Comparison between GcIUH-Clark, GIUH-Nash, Clark-IUH, and Nash-IUH models. Turkish Journal of Engineering and Environmental Sciences, 34(2), 91-104.

Adib, A., M. Salarijazi, M. Vaghefi, M., Mahmoodian-Shooshtari, and A. Akhondali, 2011. Comparison between characteristics of Geomorphoclimatic Instantaneous Unit hydrograph produced by GcIUH based Clark model and Clark IUH model. Journal of Marine Science and Technology,19(2), 201-209.

Choudhury, P., and J. Nongthombam, 2012. Application of NRCS Model to Watershed Having No Landcover Data. Environmental Management and Sustainable Development, 1(2), p1-13.

Ghahraman, B. 1995. Flood Forecasting as Affected by Complete Shape of IUH. Iran of Sci. and Tech. 19 (3), 289-300.

Jeon, J. H., K. J. Lim, and B. A. Engel, 2014. Regional calibration of SCS-CN L-THIA

 

 

model: Application for ungauged basins. Water, 6(5), 1339-1359.

Luxon, N., M., Christopher, and C.Pius, 2013.Validating the Soil Conservation Service triangular unit hydrograph (SCS-TUH) model in estimating runoff peak discharge of a catchment in Masvingo, Zimbabwe. International Journal of Water Resources and Environmental Engineering, 5(3), 157-162.

Majidi, A., M., Moradi, and H. Vagharfard, 2012. Evaluation of Synthetic Unit Hydrograph (SCS) and Rational Methods in Peak Flow Estimation (Case Study: Khoshehaye Zarrin Watershed, Iran). International Journal of Hydraulic Engineering, 1(5), 43-47.

Morgan, P. E., and S. M. Johnson, 1962. Analysis of synthetic unit-graph methods. Journal of the Hydraulics Division, 3279, 199-220.

Mostaghimi, S., and J. K. Mitchell, 1982. Peak Runoff Model Comparison on Central Illinois Watersheds. JAWRA Journal of the American Water Resources Association, 18: 9–13.

Noori, N., L., Kalin, P., Srivastava, and C. Lebleu, 2012. Effects of Initial Abstraction Ratio in SCS-CN Method on Modeling the Impacts of Urbanization on Peak Flows. In Proceedings of the World Environmental and Water Resources Congress (pp. 20-24).

Pilgrim, D. H. 1976. Travel times and nonlinearity of flood runoff from tracer measurements on a small watershed. Water Resources Research, 12(3), 487-496.

Rodríguez-Iturbe, I., M., González Sanabria, and R. L. Bras, 1982. A geomorphoclimatic theory of the instantaneous unit hydrograph. Water Resources Research, 18(4), 877-886.

Sahoo, B., Chatterjee, C., N. S., Raghuwanshi, R., Singh, and R. Kumar, 2006. Flood estimation by GIUH-based Clark and Nash models. Journal of Hydrologic Engineering, 11(6), 515-525.

Singh, V. P. 1988. Hydrologic Systems: Rainfall-runoff modeling, vol. 1. Englewood Cliffs, Prentice Hall, NJ.

Singh, V. P., and D. Frevert, 2002. Mathematical models of small watershed hydrology and applications. Water resources publications.

Sorman, A. U. 1995. Estimation of peak discharge using GIUH model in Saudi Arabia. Journal of Water Resources Planning and Management, 121(4), 287-293.

Sule, B. F., and S. A. Alabi, 2013. Application of synthetic unit hydrograph methods to construct storm hydrographs. International Journal of Water Resources and Environmental Engineering, 5(11), 639-647.

Tessema, S. M., S. W., Lyon, S. G., Setegn, and U. Mörtberg, 2014. Effects of different retention parameter estimation methods on the prediction of surface runoff using the SCS curve number method. Water resources management,28(10), 3241-3254.