بررسی تأثیر شیب خاک و شدت بارندگی بر انتقال محلول با استفاده از مطالعه آزمایشگاهی و مدل HYDRUS-2D

نوع مقاله: مقاله پژوهشی

نویسندگان

1 مهندسی آب، گروه مهندسی آب، دانشگاه تبریز، تبریز،

2 استاد گروه مهندسی آب دانشکده کشاورزی دانشگاه تبریز

3 استاد گروه مهندسی آب دانشکده کشاورزی

4 گروه مهندسی آب، گروه مهندسی آب، دانشکده کشاورزی، دانشگاه تبریز

چکیده

خاک نه­تنها محیطی برای رشد گیاه، بلکه انتقال دهنده بسیاری از آلاینده­ها به اتمسفر و آب­های سطحی و زیرزمینی است و لذا مطالعه حرکت مواد در خاک اهمیت زیادی دارد. در این مطالعه تأثیر شیب خاک و شدت بارندگی بر انتقال محلول در خاک در شرایط آزمایشگاهی بررسی شد. آزمایش­ها در دو توده خاک شیب­دار و بدون شیب انجام گرفت و شامل تزریق یک محلول غیرواکنش دهنده (سدیم­کلرید) با دو شدت مختلف بود. نتایج نشان دادند که شیب خاک موجب افزایش انتقال محلول در جهت عرضی می­شود. همچنین افزایش شدت تزریق باعث تسریع حرکت محلول به سمت عمق خاک شده و با افزایش مقدار محلول در اعماق خاک موجب افزایش غلظت بیشینه در آن­جا می­گردد. در ادامه از مدل HYDRUS-2D برای شبیه­سازی انتقال محلول استفاده شد. عملکرد مدل بعد از بهینه­سازی پارامترهای ورودی بهبود یافت و مقادیر غلظت محلول با ضریب تبیین ( ) بین 907/0-848/0 و ضریب بازدهی نش-ساتکلیف (EF) بین 907/0-805/0 و همچنین مقادیر پایین جذر میانگین مربعات خطا (RMSE) به خوبی شبیه­سازی شدند.

کلیدواژه‌ها


عنوان مقاله [English]

An Investigation into the Effects of Soil Slope and Rainfall Intensity on Solute Transport Using Laboratory Experiments and HYDRUS-2D Model

نویسندگان [English]

  • Farshid Taran 1
  • Amirhossien Nazemi 2
  • Ali . Ashraf Sadraddini 3
  • Yaghub Dinpazhuh 4
1 PhD Student of Water Engineering, Department of Water Engineering, University of Tabriz, Tabriz, Iran.
2 Prof, Department of Water Engineering, Faculty of Agriculture, University of Tabriz.
3 Associate prof, Department of Water Engineering Faculty of Agriculture, University of Tabriz
4 Associate prof. Prof., Department of Water Engineering, Faculty of Agriculture, University of Tabriz.
چکیده [English]

Soil is not only a medium for plant growth but also a transmitter of contaminants to atmosphere, surface water and ground water. Therefore, studying the movement of substances in soil is important. In this study, the effects of soil slope and rainfall intensity on solute transport in soil were investigated under laboratory conditions. The experiments were conducted in two sloping and not-sloping soil bulk and included injection of a conservative solute (NaCl) with two different intensities. The results showed that the soil slope increases the solute transport in the lateral direction, and the increase of injection intensity accelerates the solute movement towards the depths and increases the peak concentration. Solute movement was well simulated using Hydrus-2D model with the coefficient of determination (R2) between 0.848-0.907, the Nash–Sutcliffe efficiency coefficient (EF) between 0.805-0.907 and the low values of the root mean square error (RMSE).
 

کلیدواژه‌ها [English]

  • Keywords: Hydrus-2D
  • Rainfall Intensity
  • Slope
  • Solute Transport
Adamu, Ch. I., Th. N. Nganje. 2010. Heavy metal contamination of surface soil in relationship to land use patterns: a case study of Benue state, Nigeria. Materials Sciences and Applications 1 (3): 127-134.

Amin,  M. G. M., J., Simunek, M. Lagdsmand, 2014. Simulation of the redistribution and fate of contaminants from soil-injected animal slurry. Agricultural Water Management 131 (3): 17– 29.

 

Bear, J. 1972. Dynamics of Fluid in Porous Media. Elsevier publishing.

Connell, L. D. 2007. Simple models for subsurface solute transport that combine unsaturated and saturated zone pathways. Journal of Hydrology 332 (3-4): 361–373.

Dyson, J. S., R. E. White, 1989. The effect of irrigation rate on solute transport in soil during steady water flow. Journal of Hydrology 127 (1-4): 19-29.

Edwards, W. M., M. J., Shipitalo, W. A., Dick, L. B. Owens, 1992. Rainfall intensity affects transport of water and chemicals through macropores in no-till soil. Soil Science Society of America Journal 56 (1): 52-58.

Flury, M. 1996. Experimental evidence of transport of pesticides through field soils-a review. Journal of Environmental Quality 25 (1), 25–45.

Hanson, B. R., J., Simunek, J. W. Hopmans, 2006. Evaluation of urea-ammonium-nitrate fertigation with drip irrigation using numerical modeling. Agricultural Water Management 86 (1-2): 102–113.

Huang, K., V., Toride, M. Th. van Genuchten, 1995. Experimental investigation of solute transport in large, homogeneous and heterogeneous, saturated soil columns. Transport in Porous Media 18 (3): 283-302.

Jacques, D., J., Simunek, A., Timmerman, J. Feyen, 2002. Calibration of Richards’ and convection-dispersion equations to field scale water flow and solute transport under rainfall conditions. Journal of Hydrology 259 (1-4): 15-31.

Jia, C., Shing, K., Y. C. Yortsos, 1999. Visualization and simulation of non-aqueous phase liquids solubilization in pore networks. Journal of Contaminant Hydrology 35 (4): 363–387.

Kladivko, E. J., L. C, Brown, J. L. Baker, 2001. Pesticide transport to subsurface tile drains in humid regions of north America. Critical Reviews in Environmental Science and Technology 31 (1), 1–62.

Kohler, A., Abbaspour, K. C., Fritsch, M., van Genuchten, M. Th, Schulin, R. 2001. Simulating unsaturated flow and transport in a macroporous soil to tile drains subject to an entrance head: model development and preliminary evaluation. Journal of Hydrology 254 (1-4): 67-81.

Leung, A. S. E., S. C., Gupta, J. F. Moncrief, 2000. Water and solute movement in soil as influenced by macropore characteristics: 1. Macropore continuity. Journal of Contaminant Hydrology 41 (3–4): 283–301.

McGrath, G., Ch., Hinz, M. Sivapalan, 2010. Assessing the impact of regional rainfall variability on rapid pesticide leaching potential. Journal of Contaminant Hydrology 113 (1-4): 56–65.

Pang, L., M. E., Close, J. P. C., Watt, K. W. Vincen, 2000. Simulation of picloram, atrazine, and simazine leaching through two New Zealand soils and into groundwater using HYDRUS-2D. Journal of Contaminant Hydrology 44 (1): 19–46.

Phogat, V., M., Mahadevan, M., Skewes, J. W. Cox, 2011. Modelling soil water and salt dynamics under pulsed and continuous surface drip irrigation of almond and implications of system design. Irrigation Science 30 (4), 315–333.

Pot, V., J., Simunek, P., Benoit, Y., Coquet, A., Yra, M. J. M. Cordon, 2005. Impact of rainfall intensity on the transport of two herbicides in undisturbed grassed filter strip soil cores. Journal of Contaminant Hydrology 81 (1-4): 63–88.

Romano, N., B., Brunone, A. Santini, 1998. Numerical analysis of one-dimensional unsaturated flow in layered soils. Advances in Water Resources 21 (4): 315–324.

Rudra, R. P., S. C., Negi, N. Gupta, 2005. Modelling approaches for subsurface drainage water quality management. Water Quality Research Journal of Canada 40 (1): 71–81.

 

 

 

 

Schaap, M. G, F. J, Leij, M. Th. van Genuchten, 2001. ROSETTA: a computer program for estimating soil hydraulic parameters with hierarchical pedotransfer functions. Journal of Hydrology 251 (3-4): 163-176.

Sherlock, M. D, J. J, McDonnell, D. S, Curry, A. T. Zumbuhl, 2002. Physical controls on septic leachate movement in the vadose zone at the hillslope scale, Putnam County, New York, USA. Hydrological Processes 16 (13): 2559–2575.

Simunek, J., M., Sejna, H., Saito, M., Sakai, M. Th. van Genuchten, 2009. The HYDRUS-1D Software Package for Simulating the One-Dimensional Movement of Water, Heat, and Multiple Solutes in Variably-Saturated Media. 4.08 ed.

Siyal, A. A, M. Th, van Genuchten, T. H. Skaggs, 2013. Solute transport in a loamy soil under subsurface porous clay pipe irrigation. Agricultural Water Management 121: 73–80.

Toride, N., F., Leij, M. Th. van Genuchten, 1995. The CXTFIT Code for Estimating Transport Parameters from Laboratory or Field Tracer Experiments, version 2.1. California: US Salinity Laboratory, Riverside.

van Genuchten, M. Th. 1980. A closed-form equation for predicting the hydraulic conductivity of unsaturated soils. Soil Science Society of America Journal 44 (5), 892–898.

van Genuchten, M. T, J. C. Parker, 1984. Boundary-conditions for displacement experiments through short laboratory columns. Soil Science Society of America Journal 48 (4):703–8.

Vanderborght, J., R., Kasteel, M., Herbst, M., Javaux, D., Thiery, M., Vanclooster, C., Mouvet, H.Vereecken, 2005. A set of analytical benchmarks to test numerical models of flow and transport in soils. Vadose Zone Journal 4 (1): 206-221.

Wang, H., X., Ju, Y., Wei, B., Li, L., Zhao, K. Hu, 2010. Simulation of bromide and nitrate leaching under heavy rainfall and high-intensity irrigation rates in North China Plain. Agricultural Water Management 97 (10): 1646-1654.

Yu, C., B., Gao, R.M., Carpena, Y., Tian, L., Wu, O. P. Ovilla, 2011. A laboratory study of colloid and solute transport in surface runoff on saturated soil. Journal of Hydrology 402 (1-2): 159-164.

Zhu, Y., L., Shi, L., Lin, J., Yang, M. Ye, 2012. A fully coupled numerical modeling for regional unsaturated-saturated water flow. Journal of Hydrology 475: 188–203.

Zhu, Y., L., Shi, J., Yang, J., Wu, D.Mao, 2013. Coupling methodology and application of a fully integrated model for contaminant transport in the subsurface system. Journal of Hydrology 501: 56–72.