مدل‌سازی دبی جریان رودخانه با استفاده از مدل‌های چندمتغیره تلفیقی سری زمانی

نویسندگان

1 گروه علوم و مهندسی آب دانشگاه بیرجند

2 دانشگاه بیرجند

چکیده

چکیده
بیش از سه دهه است که هیدرولوژیست­ها، استفاده از مدل­های چند متغیره را جهت توصیف و مدل­سازی داده­های پیچیده هیدرولوژی، توصیه می­کنند. درحالی که به تازگی اهمیت مدل­های چند متغیره در هیدرولوژی مطرح شده است. در واقع در مدل­های چند متغیره با دخالت دادن عوامل مؤثر هواشناسی، می­توان نتایج توصیف، مدل­سازی و  پیش­بینی پارامترهای مختلف را بهبود بخشید. هم­چنین از آنجا که مدل­های غیرخطی واریانس شرطی، بخش باقی­مانده مدل­های خطی را به شکل مناسبی مدل می­کنند، انتظار می­رود با ترکیب مدل­های خطی و غیرخطی، دقت مدل­سازی و پیش­بینی­ها افزایش یابد. در این مطالعه دو مدل چند متغیره دوره­ای آرما و چند متغیره تلفیقی با واریانس شرطی جهت مدل­سازی دبی ماهانه رودخانه­های نازلوچای، بابلرود و هامون به ترتیب واقع در استان­های آذربایجان غربی، مازندران و سیستان و بلوچستان در دوره آماری 1390-1341 (50 ساله) تحت تأثیر پارامترهای دما و بارش ایستگاه سینوپتیک حوضه­ها مورد مقایسه قرار گرفتند. نتایج بررسی و صحت سنجی داده­های مدل­شده نشان داد که هر دو مدل مورد بررسی از دقت بالایی برخوردار هستند. در این مطالعه در تمام موارد مدل چند متغیره تلفیقی با واریانس شرطی از دقت بیشتری نسبت به مدل چند متغیره دوره­ای آرما برخوردار بودند. هم­چنین نتایج نشان داد که با ترکیب دو مدل ذکر شده، میزان خطای مدل (جذر میانگین مربعات خطا) به ترتیب در ایستگاه­های نازلوچای، بابلرود و هامون حدود 30، 17 و 1 درصد بهبود می­یابد. به‌طور کلی نتایج نشان داد که کاربرد هر دو مدل مورد استفاده در مناطق معتدل ایران دقت بالاتری دارد.

کلیدواژه‌ها


عنوان مقاله [English]

Modeling the River Flow Discharge by Using the Combined Multivariate Time Series Models

نویسندگان [English]

  • yousef Ramezani 1
  • Mehdi Amirabadizadeh 1
  • MOstafa Yaghoobzadeh 1
  • Mohammad nazeri tahroudi 2
چکیده [English]

Abstract
For over three decades, hydrologists were recommended multivariate models to describe and modeling the complex hydrology data. While recently the multivariate models in hydrology is discussed. In multivariate models, the modeling and predicting various parameters can improve by involving other factors. Also Since nonlinear models with conditional variance, the remaining portion of the linear models to adequately model, we expect that the combination of linear and nonlinear models, partly to increase the accuracy of modeling and predictions. In this study, two multivariate periodic ARMA and combined multivariate with conditional variance models were investigated to modeling monthly discharge of Nazloochai, Babolrood and Hamoon Rivers that located in West Azerbaijan, Mazanderan and Sistan-Balochestan Provinces respectively during the period of 1962-2011 (50 years) under effective the precipitation and temperature of mentioned basin synoptic stations. The results of evaluation and verification models (Root mean square error) showed that booth models have a more accuracy to modeling the river flow rate. Also the results showed that the combined multivariate with conditional variance model has the more accurately than multivariate periodic ARMA model. Also the results indicated that with combined two mentioned models, the model’s error in modeling the Nazloochai, Babolrood and Hamoon rivers flow discharge will be better amount 30, 17 and 1 percentage respectively. Finally the results indicated that the combined model has a more accuracy in the moderate zones of Iran.

کلیدواژه‌ها [English]

  • Conditional Variance Models
  • Precipitation
  • Seasonal Models
  • Temperature

منابع

خلیلی، ک.، ا، فاخری فرد.، ی، دین­پژوه.، ف، احمدی.، ج، بهمنش. 1391. معرفی و کاربرد الگوی تلفیقی پیشنهادی BL-ARCH در پیش­بینی دبی روزانه رودخانه (مطالعه موردی: رودخانه شهرچای ارومیه). نشریه آب و خاک (علوم و صنایع کشاورزی)، 27(2): 350-342.

صفوی، ح ر. 1388. هیدرولوژی مهندسی. چاپ دوم، انتشارات ارکان دانش، اصفهان، 724 صفحه.

ناظری تهرودی، م.، ک، خلیلی.، ف، احمدی.، ز، ناظری تهرودی. 1391. مدل­سازی دما با استفاده از سری­های زمانی پریودیک آرما (مطالعه موردی: ایستگاه سینوپتیک شهر کرمان). اولین کنفرانس ملی راهکارهای دستیابی به توسعه پایدار در بخش­های کشاورزی، منابع طبیعی و محیط زیست.

عباس زاده افشار، م.، ج، بهمنش.، ک، خلیلی.، م، ناظری تهرودی. 1395. ارزیابی مدل های تلفیقی AR-ARCH و GAR-ARCH در مدل سازی دبی جریان (مطالعه موردی: رودخانه زرینه‌رود استان آذربایجان غربی).  پژوهش‌های حفاظت آب و خاک، 23(6): 197-181.

ناظری تهرودی، م.، ک، خلیلی.، م، عباس­زاده افشار.، ز، ناظری تهرودی.، ف، احمدی.، م، مطلبیان. 1395. ارزیابی مدل­های تک­متغیره، چند­متغیره و تلفیقی سری زمانی در پیش­بینی و برآورد متوسط بار رسوب سالانه (مطالعه موردی: رودخانه سیستان.  پژوهش‌های فرسایش محیطی، 1:6(21):70-52.

Ampaw, E. M., Akuffo, B., Larbi, S. O., & Lartey, S. 2013. Time Series Modelling of Rainfall in New Juaben Municipality of the Eastern Region of Ghana. International Journal of Business and Social Science, 4(8): 116-129.

Caiado J. 2007. Forecasting water consumption in Spain using univariate time series models. Munich Personal RePEc Archive, MPRA Paper, 6610: 415-423. Online at http://mpra.ub.uni-muenchen.de/6610

Camacho F. 1984. Contemporaneous ARMA modeling with applications. Ph.D. Dissertation, Department of Statistical and Actuarial Sciences. The University of Western Ontario, London, Ontario, Canada.

Camacho F, McLeod AI, Hipel KW. 1985. Contemporaneous autoregressive - moving average (CARMA) modeling hydrology. Journal of Water Resources Bulletin, 21(4):709-720.

Engle, R. F. 1982. Autoregressive conditional heteroscedasticity with estimates of the variance of United Kingdom inflation. Econometrica: Journal of the Econometric Society, 987-1007.

Fiering, M B (1964) Multivariate technique for synthetic hydrology. Journal of the Hydraulics Division, 90(5): 43-60.

Franses PH,  Paap R. 2004. Periodic time series models. OUP Oxford.

Govindaraju, R. S. 2000. Artificial neural networks in hydrology. II: hydrologic applications. Journal of Hydrologic Engineering, 5(2): 124-137.

Hipel KW, McLeod AI. 1994. Time series modelling of water resources and environmental systems (Vol. 45). Elsevier.

Jones RH, Brelsford WM. 1967. Time series with periodic structure. Biometrika, 54(3-4): 403-408.

Karamouz M, Szidarovszky F, Zahraie B. 2003. Water resources systems analysis. CRC Press.

Kendall M G. 1938. A new measure of rank correlation. Biometrika, 30(1/2): 81-93.

Laux P, Vogl S, Qiu W, Knoche H. R, Kunstmann H. 2011. Copula-based statistical refinement of precipitation in RCM simulations over complex terrain. Journal of Hydrology and Earth System Sciences, 15: 2401–2419.

Lütkepohl H. 2005. New introduction to multiple time series analysis. Econometric theory, 22(5): 961-967.

Machiwal D, Jha MK. 2012. Hydrologic time series analysis: theory and practice. Springer Science & Business Media.

Mann HB. 1945. Nonparametric tests against trend. Econometrica: Journal of the Econometric Society, 245-259.

Matalas NC. 1967. Mathematical assessment of synthetic hydrology. Water Resources Research, 3(4): 937-945.

Matalas NC, Wallis JR. 1971. Statistical properties of multivariate fractional noise processes. Journal of water resource, 3(4): 1460-1468.

Mejia J M. 1971. On the generation of multivariate sequences exhibiting the Hurst phenomenon and some flood frequency analyses (Doctoral dissertation, Colorado State University).

Momani, P. E. N. M., & Naill, M. 2009. Time series analysis model for rainfall data in Jordan: Case study for using time series analysis. American Journal of Environmental Sciences, 5(5): 599.

O'Connell PE. 1974. Stochastic modeling of long-term persistence in streamflow sequences (Doctoral dissertation, University of London).

Pagano M. 1978. On periodic and multiple autoregressions. The Annals of Statistics, 1310-1317.

Salas JD. 1993. Analysis and modeling of hydrologic time series. Handbook of hydrology, 19: 1-72.

Tesfaye YG, Meerschaert MM, Anderson PL. 2006. Identification of periodic autoregressive moving average models and their application to the modeling of river flows. Water Resources Research, 42(1).

Troutman BM. 1979. Some results in periodic autoregression. Biometrika, 219-228.

Ula TA. 1990. Periodic covariance stationary of multivariate periodic autoregressive moving average processes. Water Resources Research, 26(5): 855-861.

Ursu E, Duchesne P. 2009. On modeling and diagnostic checking of vector periodic autoregressive time series models’, Journal of Time Series Analysis, 30(1): 70–96.

Valencia D, Schaake JC. 1973. Disaggregation processes in stochastic hydrology. Journal of water resource, 9(3): 580-585.

Valipour, M. 2015. Long‐term runoff study using SARIMA and ARIMA models in the United States. Meteorological Applications, 22(3): 592-598

 

Wang W, Van Gelder PHAJM, Vrijling JK, Ma J. 2005. Testing and modeling autoregressive conditional heteroskedasticity of streamflow processes. Nonlinear processes in Geophysics, 12(1): 55-66.

Yu YS, Zou S, Whittemore D. 1993. Non-parametric trend analysis of water quality data of rivers in Kansas. Journal of Hydrology, 150(1): 61-80