بهبود عملکرد ماشین‌های یادگیری در تخمین و پیش‌بینی ضریب آبگذری سرریز

نوع مقاله: مقاله پژوهشی

نویسندگان

1 گروه مهندسی آب و سازه های هیدرولیکی، دانشکده مهندسی عمران، دانشگاه سمنان

2 کارشناسی ارشد مهندسی و مدیریت منابع آب، دانشکده مهندسی عمران، دانشگاه سمنان.

10.22125/iwe.2020.114692

چکیده

سرریزهای کلیدپیانویی، یک نوع سازه کنترل جریان هستند که دارای ظرفیت آبگذری بیشتری نسبت به سرریز­های رایج می­باشند. در پژوهش حاضر، با هدف تخمین ظرفیت آبگذری سرریز کلیدپیانویی، از مدل­های ماشین بردار پشتیبان (SV)، هیبرید ماشین بردار پشتیبان و الگوریتم خفاش (SVR-BA) و درخت M5 استفاده شده ­است. در مجموع 162 داده آزمایشگاهی برای 7 مدل سرریز کلیدپیانویی مختلف از نتایج یک پژوهش آزمایشگاهی استخراج شده است. با بکارگیری پارامترهای نسبت هد آبی بالادست به ارتفاع سرریز، عرض کلید ورودی، عرض کلید خروجی، ارتفاع سرریز، فاکتور شکل هندسی پشت­بند و فاکتور شکل هندسی تاج به عنوان داده­های ورودی، خروجی مدل که ضریب آبگذری (Cd) می­باشد تخمین زده شد. نتایج بدست آمده بر اساس معیارهای ارزیابی نشان داد که هر سه مدل هوشمند مورد استفاده، قادر به تخمین ضریب آبگذری سرریز کلیدپیانویی هستند. اما، در دوره آزمون مدل SVR-BA با مقادیر 992/0، 007/0 و 01/0 به ترتیب برای شاخص­های ارزیابی R2، MAE و RMSE از دقت بیشتری در پیش­بینی ضریب آبگذری برخوردار است.

کلیدواژه‌ها


عنوان مقاله [English]

Improving the performance of learning machines in estimating and predicting Discharge coefficient

نویسندگان [English]

  • Saeed Farzin 1
  • Mahdi Valikhan Anaraki 2
1 Assistant Professor, Department of Water Engineering and Hydraulic Structures, Faculty of Civil Engineering, Semnan University, Semnan, Iran
2 Graduated of Water Resources Engineering and Management, Faculty of Civil Engineering, Semnan University, Semnan, Iran.
چکیده [English]

 
Piano key weirs are flow control structure that have more discharge coefficient than classic weir. In the present, study the support vector machine, hybrid of support vector machine and bat algorithm (SVR-BA) and M5 algorithm are used for predicting the discharge coefficient. Overall, 162 expremental data for seven pianokey weir model are extracted from an expremental study. Also, the discharge coefficient is prediction by employing the parameters included ratio of uppstream water hed to high of weir, width of inlet key, width of outlet key, high of weir, shape factor of fillet and shape factor of crest as input data and discharge coefficient (Cd) as output model. The results based assessment cretria shows that all tree used intelegent model can predicted the discharge coefficient of piano key weir. Nevertheless, in test period SVR-BA model has more accurate with value of 0.992, 0.007 and 0.01 respectively for R, MAE and RMSE.

کلیدواژه‌ها [English]

  • M5 model
  • Support Vector Machin- Bat
  • Discharge coefficient
  • piano key weir
احترام، م.، کرمی. ح، موسوی. س، فرزین س و سرکمریان. س. 1396. ارزیابی عملکرد الگوریتم خفاش در بهینه­سازی پارامتر­های مدل غیرخطی ماسکینگام برای روندیابی سیلاب، اکوهیدرولوژی، سال چهارم، شماره 4، ص 1025 -
 
1032.
فرزین، س.، کرمی. ح، ولیخان انارکی. م و احترام. م. 1397. کاربرد الگوریتم خفاش به منظور طراحی اقتصادی کانال باز، آبیاری و زهکشی، سال 12، شماره 3، ص 635- 646.
Al-Shammari, E.T., K. Mohammadi, A. Keivani, A. b. Hamid, S. h. Akib, S. Shamshirband and D. Petković. 2016. Prediction of daily dewpoint temperature using a model combining the support vector machine with firefly algorithm. Journal of Irrigation and Drainage Engineering, 142(5): 04016013.
‏ Vapnik, V., I. Guyon and T. Hastie. 1995. Support vector machines. Mach. Learn, 20(3): 273-297.‏
Anderson, R. M. 2011. Piano key weir head discharge relationships. MSc. Thesis, BAculty of Hydraulic Structures, Utah State University.
Azamathulla, H. M., A. H. Haghiabi and A. Parsaie. 2016. Prediction of side weir discharge coefficient by support vector machine technique. Water Science and Technology. Water Supply, 16(4): 1002-1016.‏
Haghiabi, A. H., A. Parsaie and S. Ememgholizadeh. 2018. Prediction of discharge coefficient of triangular labyrinth weirs using Adaptive Neuro Fuzzy Inference System. Alexandria Engineering Journal, 57(3): 1773-1782.‏
Heddam, S and O. Kisi. 2018. Modelling daily dissolved oxygen concentration using least square support vector machine, multivariate adaptive regression splines and M5 model tree. Journal of Hydrology, 559: 499-509.
Kabiri-Samani, A and A. Javaheri. 2012. Discharge coefficient free and submerged flow over piano key weirs. Journal of Hydraulic Research, 50(1): 114-120.
Kisi, O. 2015. Pan evaporation modeling using least square support vector machine, multivariate adaptive regression splines and M5 model tree. Journal of Hydrology, 528: 312-320.
Leite Ribeiro, M., M. Bieri, J. L. Boillat, A. J. Schleiss, G. Singhal and N. Sharma. 2012. Discharge capacity of Piano Key Weirs. Journal of Hydraulic Engineering, 138: 199-203.
Machiels, O., S. Erpicum, B. Dewals, P. Archambeau and M. Pirotton. 2011. Experimental observation of flow characteristics over a piano key weir. Journal of Hydraulic Research, 49(3): 359-366
Mansouri, I., T. Ozbakkaloglu, O. Kisi and T. Xie. 2016. Predicting behavior of FRP-confined concrete using neuro fuzzy, neural network, multivariate adaptive regression splines and M5 model tree techniques. Materials and Structures, 49: 4319–4334.
Mehr, A. D., V. Nourani, V. K. Khosrowshahi and M. A. Ghorbani. 2019. A hybrid support vector regression–firefly model for monthly rainfall forecasting, International Journal of Environmental Science and Technology, 16(1): 335-346.
Olyaie, E., M. Heydari and H. Banejad. 2018. Estimating Discharge Coefficient of PK-Weir Under Subcritical Conditions Based on High-Accuracy Machine Learning Approach.Iranian Journal of Science and Technology, Transactions of Civil Engineering, 1-13.
E. Olyaie., M. Heydari, H. Banejad and K. W. Chau. 2019. A laboratory investigation on the potential of computational intelligence approaches to estimate the discharge coefficient of piano key weir. Journal of Rehabilitation in Civil Engineering, 7(1): 1-20.‏
Olyaie, E., M. Heydari, H. Banejad and K. W. Chau. 2018. A laboratory investigation on the potential of computational intelligence approaches to estimate the discharge coefficient of piano key weir. Journal of Rehabilitation in Civil Engineering, 6: 1-20.
Parsaie, A and A. H. Haghiabi. 2017. Improving modelling of discharge coefficient of triangular labyrinth lateral weirs using SVM, GMDH and MARS techniques. Irrigation and drainage, 66(4): 636-654.‏
Parsaie, A and A. H. Haghiabi. 2017. Prediction of side weir discharge coefficient by genetic programming technique. Jordan Journal of Civil Engineering, 11(1).
 Quinlan, J. R. 1992. Learning with continuous classes. In: Adams and Sterling (Ed.), AI 92. World Scienti, Singapore, 343-348.
Shamshirband, S., K. Mohammadi, C. W. Tong, M. Zamani, S. Motamedi and S. Ch. 2016. Hybrid SVM-FFA method for prediction of monthly mean global solar radiation, Theoretical and Applied Climatology, 125(1-2): 53-65.
Vapnik, V. N. 1995. The Nature of Statistical Learning Theory. Springer, New York.
Wang, G and L. Guo. 2013. A novel hybrid bat algorithm with harmony search for global numerical optimization. Journal of Applied Mathematics. ‏
Yang, X. S. 2010. A new metaheuristic bat-inspired algorithm. In Nature inspired cooperative strategies for optimization (NICSO 2010) 65-74. Springer, Berlin, Heidelberg.‏
Yaseen, Z., M. Ehteram, A. Sharafati, S. Shahid, N. Al-Ansari and A. El-Shafie. 2018. The Integration of Nature-Inspired Algorithms with Least Square Support Vector Regression Models. Application to Modeling River Dissolved Oxygen Concentration. Water, 10(9): 1124.
Zounemat-Kermani, M and A. Mahdavi-Meymand. 2019. Hybrid meta-heuristics artificial intelligence models in simulating discharge passing the piano key weirs. Journal of Hydrology, 569. 12-21.