مدل‌سازی تبخیر از سطح آزاد آب با استفاده از ماشین بردار پشتیبان و حداقل مربعات ماشین بردار پشتیبان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 دانشیار گروه مرتع و آبخیزداری، دانشکده کشاورزی، دانشگاه گنبدکاووس، گنبد، ایران

2 گروه مهندسی آب، دانشگاه گنبد کاووس

3 گروه مهندسی آب، دانشکده کشاورزی، دانشگاه گنبدکاووس

10.22125/iwe.2021.128205

چکیده

تبخیر یکی از فرایندهای مهم و تأثیرگذار در چرخه آبی است. تشت تبخیر به علت سهولت تفسیر داده­های آن در سراسر دنیا به‌عنوان شاخصی برای تعیین تبخیر از دریاچه­ها و مخازن استفاده می­شود. بنابراین با ثبت درست مقدار تبخیر از تشت می­توان تبخیر و تعرق گیاه مرجع را تخمین زد. روابط تجربی ارائه‌شده برای تخمین تبخیر از سطوح آزاد با در نظر گرفتن پارامترهای هواشناسی به‌عنوان ورودی، دارای تنوع زیاد است. دقت روابط تجربی در مناطق مختلف متفاوت است و در هر منطقه نیاز به واسنجی دارد. همچنین از دقت بالایی برخوردار نبوده و دسترسی به تمام پارامترهای ورودی مشکل و یا اندازه­گیری آن­ها محتاج صرف هزینه و زمان زیادی می­باشد. هدف از این تحقیق ارزیابی کارایی مدل­های ماشین بردار پشتیبان و حداقل مربعات ماشین بردار پشتیبان جهت تخمین تبخیر از سطح آزاد آب در استان گلستان می­باشد. در این تحقیق از داده­های هواشناسی روزانه سه ایستگاه سینوپتیک (کلاله، گرگان و بندر ترکمن) به مدت 17 سال (1376-1393) استفاده شد. نتایج نشان داد بین الگوهای ورودی به مدل‌های SVM و LSSVM، الگوی 16 با پارامترهای ورودی  رطوبت نسبی کمینه، رطوبت نسبی بیشینه، سرعت باد و ساعات آفتابی دارای بیشترین R2 و کمترین RMSE و MBE بود. مدل LSSVM در ایستگاه بندر ترکمن دارای بهترین پیش‌بینی نسبت به دو ایستگاه دیگر بوده است. همچنین در همه ایستگاه‌های موردمطالعه مدل LSSVM دارای R2 بیشتر و RMSE و MBE کمتری نسبت به مدل SVM بوده است.

کلیدواژه‌ها


عنوان مقاله [English]

Evaporation Modeling of Free Surface Water Using SVM and LSSVM Models

نویسندگان [English]

  • Masoumeh Farasat 1
  • Motreza Seyedian 2
  • kymeia daab 3
1 Assistant professor, Department of Water Engineering, Razi University, Kermanshah
2 Assistant Professor of Ghonbad Kavous University, Water Department
3 water engineering, faculty of agriculture, gonbad university, gonbad, Iran
چکیده [English]

Evaporation is one of the most important and influential processes in the water cycle. Evaporation results in the loss of more than half of the precipitation in arid areas. Evaporation pan is used as an indicator for determining the evaporation of lakes and reservoirs due to the ease of interpreting its data around the world. On the other hand, the study on evaporation from the pan and the rate of evapotranspiration of the reference plant shows that there is a linear and direct relation between evaporation from the pan and evapotranspiration of the reference plant. Therefore, by correctly recording the amount of evaporation from the bath, the evapotranspiration of the reference plant can be estimated. ­The empirical relationships presented for estimating evaporation from free surfaces, considering meteorological parameters as inputs, are highly diverse. The accuracy of empirical relationships varies in different regions and needs calibration in each area. Also, it does not have high accuracy and access to all input parameters is difficult or time consuming. The aim of this study was to evaluate the efficiency of backup vector machine and least squares support vector machine for estimating evaporation from free water level in Golestan province. In this research, three synoptic stations (Kelaleh, Gorgan and Bandar-Turkman) were used for daily weather data for 17 years (1997-2015). The results showed that the input patterns with relative humidity input parameters, maximum relative humidity, wind speed and sunshine hours with the highest R2 and the lowest RMSE and MBE.

کلیدواژه‌ها [English]

  • Evaporation
  • SVM model
  • LSSVM model
  • PAN
احمدی، ف.، س. آیشم، ک. خلیلی و ج. بهمنش. 1396. ارزیابی عملکرد شبکه عصبی مصنوعی (ANN) و ماشین بردار پشتیبان (SVM) در تخمین مقادیر روزانه تبخیر ) مطالعه موردی: ایستگاه‌های هواشناسی تبریز و مراغه(. نشریه آب‌وخاک (علوم و صنایع کشاورزی)، پژوهش‌های جغرافیای طبیعی.1(49): 168-151.
اسکندری، ع.، ر. نوری، ح. معراجی و ا. کیا قادری.1391. توسعه مدلی مناسب بر مبنای شبکه عصبی مصنوعی و ماشین بردار پشتیبان برای پیش‌بینی بهنگام اکسیژن خواهی بیوشیمیایی 5 روزه، محیط شناسی.38(61).82-71.
رضایی، ا.، ع. خاشعی سیوکی و شهیدی، ع. 1393. طراحی شبکه پایش سطح آب زیرزمینی با استفاده از مدل حداقل مربعات ماشین بردار پشتیبان (LS-SVM)، تحقیقات آب‌وخاک ایران (علوم کشاورزی ایران).45(4)،389-396.
رضایی، ا.، ع. شهیدی و ع. خاشعی سیوکی. 1392. ارزیابی کارایی مدل حداقل مربعات ماشین بردار پشتیبان در پیش‌بینی سطح ایستابی ) مطالعه موردی: دشت رامهرمز (، نشریه آبیاری و زهکشی ایران.4(7):520-510.
زارع ابیانه، ح.، ح. نوری، ع م. لیاقت، ح. نوری و و ا. کریمی. 1390. مقایسه‌ی روش پنمن مانتیث فائو و تشت تبخیر کلاس A با داده‌های لایسیمتری در برآورد تبخیر و تعرّق گیاه برنج در منطقه‌ی آمل، پژوهش‌های جغرافیای طبیعی. 43(76): 83-71.‎
شادمانی، م و ص. معروفی.1390. مقایسه چند روش برآورد تبخیر روزانه از تشتک مطالعه موردی منطقه کرمان. مجله علوم -و فنون کشاورزی و منابع طبیعی، علوم آب‌وخاک. 15 (55):83-69.
شایان نژاد، م. 1385. مقایسه روش‌های شبکه‌های عصبی مصنوعی و پنمن مانتیث در محاسبه تبخیر و تعرق پتانسیل، همایش ملی مدیریت شبکه‌های آبیاری و زهکشی، دانشگاه شهید چمران اهواز. 537-531.
Allen, R. G., L. S. Preira., D. Raes and M. Smith, 1998. Crop evapotranspiration guidelines for computing crop water requirement. FAO Irrigation and Drainage Paper, NO.56.
Asefa, T., M. W. Kemblowski. M. Mckee and A. Khalil. 2006. Multi-time scale stream flow prediction: The support vector machine approach. Hydrology. 318:7-16.
Asefa, T., M. W. Kemblowski. M. Mckee and A. Khalil. 2004. Support vector-based groundwater head observation networks design. Water Resource Research. 40. W11509.
Behzad, M., K. Asghari M. Eazi and M. Pallhang. 2009. Generalization performance of support vector machines and neural networks in runoff modeling. Expert Systems with Applications. 36: 7624-7629.
Chang F. J., K. Y. Chang and L. C. Chang. 2008. Counter-propagation fuzzyneural network for city flood control system. J. Hydrol. 358: 24-34.
Dibike, Y., S. Velickov, D. Solomatine and M. Abbott. 2001. Model induction with of support vector machines: Introduction and applications, J. Computing in Civil Engineering, 15(3): 208-216.
Eslamian, S. S., J. Abedi-Koupai., M. J. Amiri and S. A. Gohari.2009. Estimation of daily reference evapotranspiration using support vector machines and artifical neural networks in greenhouse. Environmental Sciences. 4: 439-447.
Guo, x., x. Sun and x. Ma. 2011. Prediction of daily crop reference evapotranspiration value through a least- square support vector machine model. Hydrology Reserch. 42(4). 268- 274.
Guven, A and Kişi, O. 2011. Daily pan evaporation modeling using linear genetic programming technique, 29 (2):135-145.
Kisi, O. and M. Cimen.2010. Evapotranspiration modelling using support vector machines. Hydrological Sciences.54 (5): 918-928.
Kisi, O. and M. Zounemat-Kermani. 2014. Comparison of Two Different Adaptive Neuro-Fuzzy Inference Systems in Modelling Daily Reference Evapotranspiration. Water Resources Management, 28: 2655-2675.
Khemchandani, R., S. Jayadeva and S. Chandra.2009. Regularized least squares fuzzy support vector machine time series forecasting. Expert System with Application. 36: 132-138.
Liong,SY. And C Sivapragasam. 2002. Flood stage forecasting with support vector machines. American Water Resource Association. 38:173-186.
Liu, S., J. Bai., Z. Jia., L. Jia, H. Zhou, and L. Lu. 2010. Estimation of evapotranspiration in the Mu Us Sandland of China. Hydrology and Earth System sciences. 14: 573-584.
Moghadamnia, A., M. Ghafari., J. Piri., and D. Han. 2008. Evaporation estimation using support vector machines technique. Engineering and Technology. 33:14-22.
Pai, P., F. and W. C. Hong. 2007. A recurrent support vector regression model in rainfall forecasting. Hydrological Process. 21:819-827.
Singh, H. and A. Sankarasubramanian.2014. Systematic uncertainty reduction strategies for developing streamflow forecasts utilizing multiple climate models and hydrologic models. Water Resources Research. 50(2): 1288-1307.
Suykens, J. A. K and J. Vandewalle .1999. Least Squares Support Vector Machine Classifiers. Kluwer Academic Publishers. Printed in the Netherlands.
Tezel, G and M. Buyukyildiz. 2015. Monthly evaporation forecasting using artificial neural networks and support vector machines. Theoretical and Applied Climatology.
Tezal, G and M. Buyukyildiz, M. 2015. Modeling of daily pan evaportation in subtropical climate ANN LS-SRV fuzzy logic and ANFIS. Thero Appl Climatol.
Valyon, J. and Horvath, G. 2005. A robust LS-SVM regression. World Academy of Science, Engineering and Technology. 7:148-153.
Vapnik, V.N. 1998. Statistical Learning Theory. Wiley. New York.
Wang, L. Kisi, M. Zounemat-Kermani and H. Li. 2016. Pan evaporation modeling using six different heuristic computing methods in different climates of China.
Yu, P. S., S. T. Chen and I. F. Chang. 2006. Support vector regression for real-time flood stage forecasting. Hydrology. 328: 704-716.