بررسی تاثیر سناریوهای مختلف تغییر اقلیم بر نوسانات آب زیرزمینی در مناطق خشک و نیمه‌خشک (مطالعه موردی: دشت کرمان)

نویسندگان

1 دانشگاه تهران

2 گروه احیاء مناطق خشک و کوهستانی، دانشکده منابع طبیعی، دانشگاه تهران

3 دانشیار، دانشکده منابع طبیعی دانشگاه تهران

چکیده

استفاده از خروجی مدل‌های گردش عمومی جو برای درک شرایط آب‌وهوایی و جلوگیری از گسترش و پیامدهای ناشی از اثر تغییر اقلیم بر روی منابع آب زیرزمینی در همه اکوسیستم‌ها به ویژه مناطق خشک و نیمه‌خشک ضروری می‌باشد. بنابراین تحقیق حاضر با هدف بررسی اثرات تغییر اقلیم بر نوسانات سطح آب زیرزمینی دشت کرمان انجام شد. ابتدا جهت بررسی اثر تغییر اقلیم در دوره‌های آتی از مدل اقلیمی CanESM2 و نرم‌افزار SDSM4.2 تحت سناریوهای انتشار RCP2.6، RCP4.5 و RCP8.5 و سپس از نرم‌افزار GMS10.0.5 برای مدل‌سازی کمی آب زیرزمینی دشت کرمان استفاده گردید. مدل ریاضی تهیه شده در مهرماه سال آبی 1382-1381 برای حالت پایدار، در سال‌های 1391-1381 در 120 گام زمانی برای حالت ناپایدار و در بازه زمانی 1394-1391 برای حالت صحت‌سنجی مورد واسنجی قرار گرفت. نتایج حاصل از سناریوهای اقلیمی در دوره آتی (1409-1385) نشان داد که دما به میزان 12/1، 23/1 و 37/1 درجه سانتی‌گراد و بارش به میزان 69/14، 19و 26/29 درصد در سناریوهای RCP2.6، RCP4.5 و RCP8.5 افزایش می‌یابد. نتایج اعمال سناریوهای اقلیمی نشان داد که به دلیل افزایش بارندگی در این دوره، متوسط تراز سطح آب زیرزمینی در سناریوهای RCP2.6، RCP4.5 و RCP8.5 در دوره آتی (1409-1395) نسبت به تراز سطح آب در سال 1382-1381 به ترتیب به میزان 19/7 و 26/7 و 33/7 متر در کل محدوده کاهش می‌یابد. لذا پیشنهاد می‌گردد مسئولین تمهیداتی را در مقابله با گرمایش جهانی حاصل از تغییرات اقلیمی و بهره‌برداری بیش از حد از منابع آب زیرزمینی از طریق اصلاح الگوی کشت، روش‌های نوین آبیاری اتخاذ نمایند.

کلیدواژه‌ها


عنوان مقاله [English]

Investigating the Impact of Different Climate Change Scenarios on Groundwater Fluctuations in Arid and Semi-Arid Regions (Case Study: Kerman Plain)

نویسندگان [English]

  • meysam jafary godeneh 1
  • ALI Salajegheh 2
  • Arash Malekian 3
1 university of tehran
2 Professor, Rehabilitation group of arid and mountainous areas, Faculty of Natural Resource, University of Tehran.
3
چکیده [English]

Use the output of atmospheric general circulation models to understand the weather conditions and to prevent the spread and consequences of climate change on groundwater resources in all ecosystems, especially in arid and semi-arid regions is necessary. The present study was conducted to investigate the impacts of climate change on groundwater level fluctuations in Kerman plain, Iran. In order to investigate the impact of climate change in future periods, the CanESM2 climate model and SDSM4.2 software were used under RCP2.6, RCP4.5 and RCP8.5 emission scenarios. Then, GMS10.0.5 was used for quantitative modeling of groundwater in Kerman plain. The mathematical model prepared for the steady state in 2002-2003 was calibrated over 2002-2012 in 120 steps for the unsteady state condition and the 2012-2015 period for the calibration. The results of climate scenarios in the upcoming period (2006-2030) showed that temperature will increase by 1.12, 1.23 and 1.37 degrees Celsius while rainfall will increase by 14.69, 19 and 26.29 percent in RCP2.6, RCP4.5 and RCP8.5 scenarios, respectively. The results of climate scenarios showed that in spite of increased rainfall and the assumption of constant utilization of groundwater, the average groundwater level in RCP2.6, RCP4.5 and RCP8.5 scenarios in the upcoming period would be lower than the water level compared with the base year (2002-2003), by 7.19 and 7.26, and 7.33 meter in the whole region, respectively. It is recommended that measures to deal with global warming resulting from climate change and over-exploitation of groundwater resources by reforming cropping patterns, irrigation new methods.

کلیدواژه‌ها [English]

  • CanESM2 model
  • Kerman plain
  • Climate scenarios
  • GMS model
جعفری، م.، سلاجقه، ع و آ. ملکیان. 1395. بررسی اثرات تغییر اقلیم بر روی کمیت و کیفیت سفره‌های آب زیرزمینی (مطالعه موردی: دشت کرمان). پایان­نامه دانشگاه تهران. ص 2.
رزندی، ی.، ملکیان، آ و ش. خلیقی. 1393. بررسی وضعیت منابع آب زیرزمینی با استفاده از  شبیه­سازی رفتار آبخوان توسط مدل Modflow : مطالعه موردی دشت ورامین. پایان­نامه دانشگاه تهران. ص 2.
شرکت آب منطقه‌ای کرمان. 1393. گزارش مطالعات بهنگام­سازی بیلان منابع آب محدوده‌های مطالعاتی حوزه آبخیز کویرهای درانجیر و ساغند.
کیخا، آ و ع. مساح بواتی. 1393. تاثیر تغییر اقلیم بر کیفیت آب سطحی در دوره های آتی ( مطالعه موردی رودخانه زرینه رود). پایان­نامه دانشگاه تهران. ص 2.
مسماریان، ز.، مساح بواتی، ع و س. جوادی پیربازاری. 1395. تأثیر تغییر اقلیم بر بیلان آب زیرزمینی دشت شهرکرد در دوره‌های آتی. اکوهیدرولوژی، دوره 3، شماره 2، ص 242-233.‎
Ahmadi, S. H and Sedghamiz, A. 2007. Geostatistical analysis of spatial and temporal variations of groundwater level. Environmental monitoring and assessment, 129(1-3), 277-294.
Ali, R., McFarlane, D., Varma, S., Dawes, W., Emelyanova, I., Hodgson, G and Charles, S. 2012. Potential climate change impacts on groundwater resources of south-western Australia. Journal of Hydrology, 475, 456-472.
Basheer, A. K., Lu, H., Omer, A., Ali, A. B and Abdelgader, A. 2016. Impacts of climate change under CMIP5 RCP scenarios on the streamflow in the Dinder River and ecosystem habitats in Dinder National Park, Sudan. Hydrology and Earth System Sciences, 20(4), 1331-1353.
Choubin, B., Zehtabian, G., Azareh, A., Rafiei-Sardooi, E., Sajedi-Hosseini, F and Kişi, Ö. 2018. Precipitation forecasting using classification and regression trees (CART) model: a comparative study of different approaches. Environmental Earth Sciences, 77(8), 314.
Easterling, D. R., Meehl, G. A., Parmesan, C., Changnon, S. A., Karl, T. R and Mearns, L. O. 2000. Climate extremes: observations, modeling, and impacts. Science, 289(5487), 2068-2074.
El Yaouti, F., El Mandour, A., Khattach, D and Kaufmann, O. 2008. Modelling groundwater flow and advective contaminant transport in the Bou-Areg unconfined aquifer (NE Morocco). Journal of Hydro-environment Research, 2(3), 192-209.
Emam, A. R., Kappas, M and Hosseini, S. Z. 2015. Assessing the impact of climate change on water resources, crop production and land degradation in a semi-arid river basin. Hydrology Research, 46(6), 854-870.
European Environment Agency, European Commission, World Health Organization (Eds.). 2008. Impacts of Europe's Changing Climate: 2008 Indicator-Based Assessment: Joint EEA-JRC-WHO Report. Office for Official Publications of the European Communities, Copenhagen: Luxembourg.
Feyissa, G., Zeleke, G., Bewket, W and Gebremariam, E. 2018. Downscaling of future temperature and precipitation extremes in Addis Ababa under climate change. Climate, 6(3), 58.
Fu, G., Charles, S. P., Chiew, F. H., Teng, J., Zheng, H., Frost, A. J., Liu, W and Kirshner, S. 2013. Modelling runoff with statistically downscaled daily site, gridded and catchment rainfall series. Journal of Hydrology, 492, 254–265.
Gemitzi, A., Ajami, H and Richnow, H. H. 2017. Developing empirical monthly groundwater recharge equations based on modeling and remote sensing data–Modeling future groundwater recharge to predict potential climate change impacts. Journal of Hydrology, 546, 1-13.
Gibrilla, A., Anornu, G and Adomako, D. 2018. Trend analysis and ARIMA modelling of recent groundwater levels in the White Volta River basin of Ghana. Groundwater for Sustainable Development, 6, 150-163.
Green, T. R., Taniguchi, M., Kooi, H., Gurdak, J. J., Allen, D. M., Hiscock, K. M and Aureli, A. 2011. Beneath the surface of global change: Impacts of climate change on groundwater. Journal of Hydrology, 405(3-4), 532-560.
Huang, J., Yu, H., Guan, X., Wang, G and Guo, R. 2016. Accelerated dryland expansion under climate change. Nature Climate Change, 6(2), 166-171.
IPCC- TGCIA. 2007. Guidelines on the Use of Scenario Data for Climate impact and Adaption Assessment. Version 2. Prepared by Carter, T. R. Hulme, M. and Lal, M. Intergovermental Panel on Climate change, Task Group on Scenarios for Climate Impact Assessment, 66 PP.
IPCC. 2013. Summary for policymakers. In: Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M.  Climate Change:  The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.
IPCC. 2007. Climate Change 2007: the physical science basis. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller H.L. (Eds), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge University Press, Cambridge.
Jayakody, P., Parajuli, P. B., Sassenrath, G. F and Ouyang, Y. 2014. Relationships between water table and model simulated ET. Groundwater, 52(2), 303-310.
Jyrkama, M. I and Sykes, J. F. 2007. The impact of climate change on spatially varying groundwater recharge in the Grand River watershed (Ontario). Journal of Hydrology, 338(3-4), 237-250.
Kazmi, D. H., Rasul, G., Li, J and Cheema, S. B. 2014. Comparative study for ECHAM5 and SDSM in downscaling temperature for a geo-climatically diversified region, Pakistan. Applied Mathematics, 5(1), 137.
Kinzelbach, W. 2002. A survey of methods for analysing groundwater recharge in arid and semi-arid regions, Division of Early Warning and Assessment. United Nations Environmental Program. UNEP/DEWA/RS. 02-2.
Liu, Z., Xu, Z., Charles, S. P., Fu, G and Liu, L. 2011. Evaluation of two statistical downscaling models for daily precipitation over an arid basin in China. International Journal of Climatology, 31(13), 2006-2020.
Miao, C., Duan, Q., Sun, Q., Huang, Y., Kong, D., Yang, T and Gong, W. 2014. Assessment of CMIP5 climate models and projected temperature changes over Northern Eurasia. Environmental Research Letters, 9 (5), 055007.
Moriasi, D. N., Arnold, J. G., Van Liew, M. W., Bingner, R. L., Harmel, R. D and Veith, T. L. 2007. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Transactions of the ASABE, 50(3), 885-900.
Pholkern, K., Saraphirom, P and Srisuk, K. 2018. Potential impact of climate change on groundwater resources in the Central Huai Luang Basin, Northeast Thailand. Science of the Total Environment, 633, 1518-1535.
Qiu, S., Liang, X., Xiao, C., Huang, H., Fang, Z and Lv, F. 2015. Numerical simulation of groundwater flow in a river valley basin in Jilin urban area, China. Water, 7(10), 5768-5787.
Salem, G. S. A., Kazama, S., Shahid, S and Dey, N. C. 2018. Impacts of climate change on groundwater level and irrigation cost in a groundwater dependent irrigated region. Agricultural Water Management, 208, 33-42.
Scibek, J., Allen, D. M., Cannon, A. J and Whitfield, P. H. 2007. Groundwater–surface water interaction under scenarios of climate change using a high-resolution transient groundwater model. Journal of Hydrology, 333(2-4), 165-181.
Simmons, C., Bauer-Gottwein, P., Graf, T., Kinzelbach, W., Kooi, H., Li, L and Ward, J. 2010. Variable density groundwater flow: From modelling to applications (Doctoral dissertation, Cambridge University Press).
Wilby, R. L and Dawson, C. W. 2013. The statistical downscaling model: insights from one decade of application. International Journal of Climatology, 33(7), 1707-1719.
Wilby, R. L., Dawson, C. W and Barrow, E. M. 2002. SDSM—a decision support tool for the assessment of regional climate change impacts. Environmental Modelling and Software, 17(2), 145-157.
Zhang, A., Zhang, C., Fu, G., Wang, B., Bao, Z and Zheng, H. 2012. Assessments of impacts of  climate  change  and  human  activities  on  runoff  with  SWAT  for  the  Huifa  River  Basin. Northeast China, Water Resources Management, 26(8), 2199–2217.