استفاده از رس سپیولیت، زغال زیستی ذرت و کمپلکس رس-زغال زیستی در حذف سرب از محیط‌های آبی

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه آب و خاک، دانشکده مهندسی کشاورزی، دانشگاه صنعتی شاهرود، ایران

2 آب و خاک، دانشکده کشاورزی، دانشگاه صنعتی شاهرود، شاهرود، ایران

3 گروه آب و خاک، دانشکده کشاورزی، شاهرود، دانشگاه صنعتی شاهرود، ایران.

4 گروه مهندسی شیمی، دانشکده مهندسی شیمی و مواد، دانشگاه صنعتی شاهرود

چکیده

با افزایش روزافزون جمعیت و افزایش مصرف آب در بخش‌های کشاورزی و صنعت، ورود آلاینده­های مختلف به محیط‌زیست و منابع آب‌وخاک افزایش‌یافته است. در این مطالعه با روش جذب، حذف فلز سرب از آب توسط سه جاذب رس سپیولیت، زغال زیستی ذرت و کمپلکس رس- زغال زیستی ذرت بررسی شد. برای این منظور آزمایش مربوط به هم­دماهای جذب و سینتیک جذب توسط سه جاذب موردمطالعه انجام شد. با افزایش غلظت در سرب از 50 تا 1500 میلی‌گرم بر لیتر ظرفیت جذب جاذب‌ها افزایش، اما درصد جذب کاهش یافت. نتایج نشان داد که بیشترین ظرفیت جذب در سرب مربوط به جاذب زغال زیستی ذرت می‌باشد، این در حالی است که کمپلکس رس- زغال زیستی از جاذب رس ظرفیت جذب بیشتری داشت. جهت مطالعه فرآیند جذب، هم‌دماهای لانگمویر و فروندلیچ برای هر جاذب بررسی گردید و مشخص شد جذب سرب توسط جاذب‌ها از هر دو مدل تبعیت می‌کند اما مدل لانگمویر با داشتن بالاترین ضریب تبیین (R2) و کمترین مجموع مربعات خطای معیار (SSE) بهترین برازش را با داده‌های آزمایشگاهی نشان داد. اثر زمان تماس با جاذب بر میزان جذب بررسی و مشخص شد که راندمان جذب با افزایش زمان تماس افزایش یافت. برازش مدل‌های سینتیک شبه مرتبه اول، شبه مرتبه دوم، الوویچ و پخشیدگی درون ذرّه‌ای برای سرب در غلظت‌های 600، 1000 و 1500 میلی‌گرم بر لیتر در زمان‌های 30 تا 1440 دقیقه انجام یافت. مدل الوویچ در غلظت 500 میلی‌گرم بر لیتر سرب و مدل شبه مرتبه دوم در غلظت‌های 1000 و 1500 میلی‌گرم بر لیتر بهترین برازش را با داده‌های آزمایشگاهی نشان داد. در غلظت‌های پایین، کمپلکس رس-زغال زیستی عملکرد بهتری در جذب نشان داد ولی با افزایش غلظت سرب، زغال زیستی جاذب بهتری نسبت به دو جاذب دیگر بود.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Removal of Pb from Aqueous Solution Using Sepiolite Clay, Corn Biochar, and Clay-biochar Complex

نویسندگان [English]

  • Soroosh soleymani 1
  • zahra ganji 2
  • Vajiheh Dorostkar 1
  • Mohamad Hadi Movahednejad 3
  • Mashallah Rezakazemi 4
1 Soil and Water Department, Faculty of Agriculture, Shahrood University of Technology
2 and Water Department, Faculty of Agriculture, Shahrood University of Technology, Shahrood, Iran.
3 Soil and Water department, Agriculture Faculty, Shahrood, Shahrood University of Technology, Iran.
4 Chemical Engineering Department, Faculty of Chemical and Materials Engineering, Shahrood University of Technology, Shahrood, Iran
چکیده [English]

Increasing population and water consumption in agriculture and industry sectors enhanced the entry of various pollutants into the environment and water resources. In this study, the removal of lead from water by three adsorbents, sepiolite clay, corn biochar, and corn biochar-clay complex were investigated. For this purpose, the adsorption isotherms and kinetics were performed by the three studied adsorbents. By increasing the concentration in lead from 50 to 1500 mg L-1, the absorption capacity of the adsorbents increased, but the absorption percentage decreased. The results showed that the lead highest absorption capacity is related to the corn biochar adsorbent, while the clay-biochar complex had a higher absorption capacity than the clay adsorbent. To study the absorption process, Langmuir and Freundlich's isotherms were checked for each adsorbent and it was found that the absorption of lead follows both models, but the Langmuir model with the highest coefficient of explanation (R2) and the lowest sum of squared standard error (SSE) has the best fit. The effect of contact time with the adsorbent on the absorption rate was investigated and it was found that the absorption efficiency increased with increasing contact time. The pseudo-first-order, pseudo-second-order, Elovich and intraparticle diffusion kinetic models were fitted for lead at concentrations of 600, 1000 and 1500 mg L-1 in 30 to 1440 min. The Elovich model at the concentration of 500 mg/L and the pseudo-second order model at the concentrations of 1000 and 1500 mg/L showed the best fit with the laboratory data. At low concentrations, the clay-biochar complex showed better absorption performance, but biochar was a better absorber with increasing lead concentration than the other two adsorbents.

کلیدواژه‌ها [English]

  • : lead
  • adsorbent
  • sepiolite
  • biochar
  • Langmuir model
  • Elovich model
  • adsorption kinetics model
بی­نام، سالنامه آماری آب کشور 90-1389. 1394. وزارت نیرو، دفتر برنامه­ریزی کلان آب و آبفا.
پورکیوانی نرگور، ن. 1391. روش­های حذف فلزات سنگین توسط جاذب­ها، پایان­نامه کارشناسی ارشد مهندسی شیمی، دانشکده فنی مهندسی، دانشگاه آزاد
حاج ­علیلو، ب. و ب. وثوق. 1390. زمین­شناسی پزشکی، چاپ اول، انتشارات دانشگاه پیام نور، صفحه 50 و 55.
حجتی، س.، ا. لندی و ه. آل کثیری. 1392. ارزیابی توانایی کانی سپیولیت در کاهش آبشویی سرب و روی از ستون­های خاک. مجله عامی کشاورزی مهندسی زراعی. 36(1): 22-13.
 رفیعی، م. ر.، م. شیروانی و ط. بهزاد. 1393. کارایی سپیولیت و بنتونیت اصلاح‌شده با سورفکتانت کاتیونی در جذب سرب از محلول­های آبی. نشریه آب‌وخاک (علوم و صنایع کشاورزی). 28(4): 835-818.
کوتاه زاده، ن. 1390. مروری بر آلودگی ناشی از فلزات سنگین و معرفی تکنولوژی جذب زیستی جهت حذف آلاینده­ها از پساب، دومین کنفرانس ملی پژوهش­های کاربردی منابع آب ایران، زنجان، 7-3.
محمدی ­فتیده، م. 1377. شناخت منابع آب (ترازنامه­ها – آلودگی­ها). چاپ دوم. انتشارات دانشگاه گیلان.
نبی زاده، س.، ف. صادق زاده، ب. جلیلی و م. عمادی. 1397. جذب متیلن توسط بیوچار از محلول­های آبی. مجله تحقیقات آب‌وخاک ایران (مجله علوم کشاورزی ایران)، 49(1): 57-51.
 
Ahmad, M., S. S. Lee, X. Dou, D. Mohan, J. K. Sung, J. E. Yang, and Y. S. Ok. 2012. Effects of pyrolysis temperature on soybean stover-and peanut shell-derived biochar properties and TCE adsorption in water. Bioresource technology, 118, 536-544.
Ali, I. O., A. M. Hassan, S. M. Shaaban and K. S. Soliman. 2011. Synthesis and characterization of ZSM-5 zeolite from rice husk ash and their adsorption of Pb2+ onto unmodified and surfactant-modified zeolite. Separation and Purification Technology, 83, 38-44.
Ayyappan, P., G. Sirokman, O. R. Evans, T. H. Warren and W. Lin. 2004. Non-linear optically active zinc and cadmium p-pyridinecarboxylate coordination networks. Inorganica chimica acta, 357(13), 3999-4004.
Baycu, G., D. Tolunay, H. Özden and S. Günebakan. 2006. Ecophysiological and seasonal variations in Cd, Pb, Zn, and Ni concentrations in the leaves of urban deciduous trees in Istanbul. Environmental pollution, 143(3), 545-554.
Chen, B., D. Zhou and L. Zhu. 2008. Transitional adsorption and partition of nonpolar and polar aromatic contaminants by biochars of pine needles with different pyrolytic temperatures. Environmental science & technology, 42(14), 5137-5143.
Chen, X., G. Chen, L. Chen, Y. Chen, J. Lehmann, M. B. McBride and A. G. Hay. 2011. Adsorption of copper and zinc by biochars produced from pyrolysis of hardwood and corn straw in aqueous solution. Bioresource technology, 102(19), 8877-8884.
Coates, J. (2006). Interpretation of infrared spectra, a practical approach. Encyclopedia of analytical chemistry: applications, theory and instrumentation.
Dinu, M. V. and E. S. Dragan. 2010. Evaluation of Cu2+, Co2+ and Ni2+ ions removal from aqueous solution using a novel chitosan/clinoptilolite composite: Kinetics and isotherms. Chemical Engineering Journal, 160(1), 157-163.‏
Dubey, S. S. and R. K. Gupta. 2005. Removal behavior of Babool bark (Acacia nilotica) for submicro concentrations of Hg2+ from aqueous solutions: a radiotracer study. Separation and purification technology, 41(1), 21-28.
Fosso-Kankeu, E., F. B. Waanders and F. W. Steyn. 2015. The preparation and characterization of clay-biochar composites for the removal of metal pollutants. In 7th International Conference on latest Trends in Engineering and Technology (ICLTET’2015) (pp. 54-57).
Giles, C. H., T. H. MacEwan, S. N. Nakhwa and D. Smith. 1960. 786. Studies in adsorption. Part XI. A system of classification of solution adsorption isotherms, and its use in diagnosis of adsorption mechanisms and in measurement of specific surface areas of solids. Journal of the Chemical Society (Resumed), 3973-3993.
Humelnicu, D., M. V. Dinu and E. S. Drăgan. 2011. Adsorption characteristics of UO22+ and Th4+ ions from simulated radioactive solutions onto chitosan/clinoptilolite sorbents. Journal of hazardous materials, 185(1), 447-455.
Inyang, M., B. Gao, Y. Yao, Y. Xue, A. R. Zimmerman, P. Pullammanappallil and X. Cao. 2012. Removal of heavy metals from aqueous solution by biochars derived from anaerobically digested biomass. Bioresource technology, 110, 50-56.
Kaya, A. and A. H. Ören. 2005. Adsorption of zinc from aqueous solutions to bentonite. Journal of Hazardous Materials, 125(1-3), 183-189.
Kubilay, Ş., R. Gürkan, A. Savran and T. Şahan. 2007. Removal of Cu (II), Zn (II) and Co (II) ions from aqueous solutions by adsorption onto natural bentonite. Adsorption, 13(1), 41-51.
Lazarević, S., I. Janković-Častvan, D. Jovanović, S. Milonjić, D. Janaćković and R. Petrović. 2007. Adsorption of Pb2+, Cd2+ and Sr2+ ions onto natural and acid-activated sepiolites. Applied Clay Science, 37(1-2), 47-57.
Lee, Y., C. Ryu, Y. K. Park, J. H. Jung and S. Hyun. 2013. Characteristics of biochar produced from slow pyrolysis of Geodae-Uksae 1. Bioresource Technology, 130, 345-350.
Lehmann, J., J. P. da Silva, C. Steiner, T. W. Nehls, Zech and B. Glaser. 2003. Nutrient availability and leaching in an archaeological Anthrosol and a Ferralsol of the Central Amazon basin: fertilizer, manure and charcoal amendments. Plant and soil, 249(2), 343-357.
Liang, X., Y. Xu, L. Wang, Y. Sun, D. Lin, Y. Sun and Q. Wan. 2013. Sorption of Pb2+ on mercapto functionalized sepiolite. Chemosphere, 90(2), 548-555.
Liu, Z., A. Quek, S. K. Hoekman and R. Balasubramanian. 2013. Production of solid biochar fuel from waste biomass by hydrothermal carbonization. Fuel, 103, 943-949.
Lu, H., W. Zhang, Y. Yang, X. Huang, S. Wang and R. Qiu. 2012. Relative distribution of Pb2+ sorption mechanisms by sludge-derived biochar. Water research, 46(3), 854-862.
Özcan, A. S., Ö. Gök and A. Özcan. 2009. Adsorption of lead (II) ions onto 8-hydroxy quinoline-immobilized bentonite. Journal of Hazardous materials, 161(1), 499-509.
Premarathna, K. S. D., A. U. Rajapaksha, N. Adassoriya, B. Sarkar, N. M. Sirimuthu, A. Cooray and M. Vithanage. 2019. Clay-biochar composites for sorptive removal of tetracycline antibiotic in aqueous media. Journal of environmental management, 238, 315-322.
Qiu, Y., H. Cheng, C. Xu and G. D. Sheng. 2008. Surface characteristics of crop-residue-derived black carbon and lead (II) adsorption. Water Research, 42(3), 567-574.
Özcan, A. S., Ö. Gök and A. Özcan. 2009. Adsorption of lead (II) ions onto 8-hydroxy quinoline-immobilized bentonite. Journal of Hazardous materials, 161(1), 499-509.
Sheikhhosseini, A., M. Shirvani, H. Shariatmadari, F. Zvomuya and B. Najafic. 2014. Kinetics and thermodynamics of nickel sorption to calcium–palygorskite and calcium–sepiolite: A batch study. Geoderma, 217, 111-117.
Shirvani, M., H. Shariatmadari, M. Kalbasi, F. Nourbakhsh and B. Najafi. 2006. Sorption of cadmium on palygorskite, sepiolite and calcite: equilibria and organic ligand affected kinetics. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 287(1-3), 182-190.
Wang, F. Y., H. Wang and J. W. Ma. 2010. Adsorption of cadmium (II) ions from aqueous solution by a new low-cost adsorbent—Bamboo charcoal. Journal of hazardous materials, 177(1-3), 300-306.
Yaman, S. 2004. Pyrolysis of biomass to produce fuels and chemical feedstocks. Energy conversion and management, 45(5), 651-671.
Yao, Y., B. GAO, J. Fang, M. Zhang, H. Chen, Y. Zhou and L. Yang. 2014. Characterization and environmental applications of clay–biochar composites. Chemical Engineering Journal, 242, 136-143