شناسایی منطقه نشت در سیستم‌های توزیع آب بزرگ (مطالعه موردی: شهر ماهان در استان کرمان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 بخش مهندسی عمران، دانشکده فنی مهندسی، دانشگاه شهید باهنر، کرمان، ایران

2 گروه مهندسی عمران، دانشکده فنی مهندسی، دانشگاه شهید باهنر، کرمان، ایرانان

3 مهندسی عمران-سازه های هیدرولیکی، بخش مهندسی عمران، دانشکده فنی و مهندسی، دانشگاه شهیدباهنرکرمان

10.22125/iwe.2023.173289

چکیده

امروزه شناسایی نشت مسئله مهمی در شبکه­های توزیع آب می­باشد، زیرا نشت هزینه­ها را افزایش داده و موجب اتلاف منابع آب می­شود. در این مطالعه، از یک روش جدید برای شناسایی منطقه نشت در شبکه توزیع آب قسمتی از شهر ماهان استفاده شد. ابتدا توسط الگوریتم خوشه­بندی K-means، شبکه به تعدادی از مناطق تقسیم شد. سپس نمونه­های آموزش مربوط به هر منطقه، با استفاده از شبیه­سازی تصادفی نشت در مدل هیدرولیکی شبکه ساخته شد. شماره هر منطقه به عنوان برچسب طبقه­بندی ماشین بردار پشتیبان چندکلاسی مورد استفاده قرار گرفت و به همراه نمونه­های آموزش، مدل طبقه­بندی آموزش داده شد. در نهایت، مدل آموزش دیده به عنوان مدل شناسایی منطقه نشت استفاده شد و برای تعیین مناطق احتمالی نشت با نمونه­های میدانی مشاهده شده، اعمال شد. نتایج نشان می­دهد که از میان 10 ساختار استفاده شده برای ساخت مدل، تنها سه ساختار شامل؛ «سه منطقه و تابع هسته پایه شعاعی»، «سه منطقه و تابع هسته خطی» و «پنج منطقه و تابع هسته خطی»، به ترتیب میزان قابل قبول 27/99 % ، 18/99 % و 99/98 % را برای شاخص ارزیابی «دقت» ایجاد می­کنند. از طرف دیگر، از میان این سه ساختار، تقسیم شبکه به پنج منطقه نشت و استفاده از تابع هسته خطی، شبکه را به تعداد مناطق بیشتری تقسیم می­کند و نشت­یابی را در مناطق محدود شده آسان­تر می­کند. در نتیجه برای ساخت مدل نهایی از این ساختار استفاده شد.
 
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Identification of leakage area in large water distribution systems (Case study: Mahan city in Kerman province)

نویسندگان [English]

  • yasaman sadat hashemi poor 1
  • Gholam Abbas Barani 2
  • Ehsan Fadaei-Kermani 3
1 Department of Civil Engineering, Faculty of Engineering, Shahid Bahonar University, Kerman, Iran
2 Department of Civil Engineering, Faculty of Engineering, Shahid Bahonar University, Kerman, Iran
3 Ph.D. Graduate, Department of Civil Engineering, Faculty of Engineering, Shahid Bahonar University of Kerman,
چکیده [English]

Today, leak detection is an important issue in water distribution networks, because leakage increases costs and causes a waste of water resources. In this study, a new method was used to identify the leak area in the water distribution network at part of Mahan city. First, the network was divided into a number of areas by the K-means clustering algorithm. Then, training samples related to each area were made using random leakage simulation in the network hydraulic model. The number of each area was used as the classification label of the multi-class support vector machine and along with the training samples, the classification model was taught. Finally, the trained model was used as a leak area identification model and was applied to determine possible leak areas with the observed field samples. The results show that out of 10 structures used to build the model, only three structures include; "Three areas and radial basis kernel function", "Three areas and linear kernel function" and "Five areas and linear kernel function", respectively, make an acceptable rate of 99.27%, 99.18% and 98.99% for the "Accuracy" evaluation index. On the other hand, among these three structures, dividing the network into five leak areas and using the linear kernel function divides the network into more areas and makes leak detection easier in restricted areas. As a result, this structure was used to build the final model.
 

کلیدواژه‌ها [English]

  • Leakage area identification
  • Water distribution network
  • Mahan city
  • Epanet
  • Matlab
Aksela, K., Aksela, M., & Vahala, R. (2009). Leakage detection in a real distribution network using a SOM. Urban Water Journal, 6(4), 279-289.
Bohorquez, J., Alexander, B., Simpson, A. R., & Lambert, M. F. (2020). Leak detection and topology identification in pipelines using fluid transients and artificial neural networks. Journal of Water Resources Planning and Management, 146(6), 04020040.
Cataldo, A., De Benedetto, E., Cannazza, G., Leucci, G., De Giorgi, L., & Demitri, C. (2017). Enhancement of leak detection in pipelines through time-domain reflectometry/ground penetrating radar measurements. IET Science, Measurement & Technology, 11(6), 696-702.
Chamasemani, F. F., & Singh, Y. P. (2011). Multi-class support vector machine (SVM) classifiers-an application in hypothyroid detection and classification. In 2011 Sixth International Conference on Bio-Inspired Computing: Theories and Applications (pp. 351-356). IEEE.
Chapelle, O., Vapnik, V., Bousquet, O., & Mukherjee, S. (2002). Choosing multiple parameters for support vector machines. Machine learning, 46(1), 131-159.
Chen, J., Feng, X., & Xiao, S. (2020). An iterative method for leakage zone identification in water distribution networks based on machine learning. Structural Health Monitoring, 1475921720950470.
Cortes, C., and Vapnik, V. (1995). Support-vector networks. Mach. learn, 20(3), 273-297.
Costanzo, F., Morosini, A. F., Veltri, P., & Savić, D. (2014). Model calibration as a tool for leakage identification in WDS: A real case study. Procedia Engineering, 89, 672-678.
Feng, J., & Zhang, H. (2006). Algorithm of pipeline leak detection based on discrete incremental clustering method. In International Conference on Intelligent Computing (pp. 602-607). Springer, Berlin, Heidelberg.
Gong, J., Png, G. M., Arkwright, J. W., Papageorgiou, A. W., Cook, P. R., Lambert, M. F., ... & Zecchin, A. C. (2018). In-pipe fibre optic pressure sensor array for hydraulic transient measurement with application to leak detection. Measurement, 126, 309-317.
Hu, X., Han, Y., Yu, B., Geng, Z., & Fan, J. (2021). Novel leakage detection and water loss management of urban water supply network using multiscale neural networks. Journal of Cleaner Production, 278, 123611.
Kingdom, W. D., Limberger, R., and Marin, P. (2006). The Challenge of Reducing NRW in Developing Countries. In WSS Sector Board Discussion, Paper No. 8, World Bank, Washington, DC.
MacKay, D. J., & Mac Kay, D. J. (2003). Information theory, inference and learning algorithms. Cambridge university press.
Mamo, T. G., Juran, I., & Shahrour, I. (2014). Virtual DMA municipal water supply pipeline leak detection and classification using advance pattern recognizer multi-class SVM. Journal of Pattern Recognition Research, 1, 25-42.
Mashford, J., De Silva, D., Burn, S., & Marney, D. (2012). Leak detection in simulated water pipe networks using SVM. Applied Artificial Intelligence, 26(5), 429-444.
Milgram, J., Cheriet, M., & Sabourin, R. (2006). “One against one” or “one against all”: Which one is better for handwriting recognition with SVMs?. Training, 195, 143-160.
Mounce, S. R., Boxall, J. B., & Machell, J. (2010). Development and verification of an online artificial intelligence system for detection of bursts and other abnormal flows. Journal of Water Resources Planning and Management, 136(3), 309-318.
Mounce, S. R., Mounce, R. B., & Boxall, J. B. (2011). Novelty detection for time series data analysis in water distribution systems using support vector machines. Journal of hydroinformatics, 13(4), 672-686.
Poulakis, Z., Valougeorgis, D., & Papadimitriou, C. (2003). Leakage detection in water pipe networks using a Bayesian probabilistic framework. Probabilistic Engineering Mechanics, 18(4), 315-327.
Quinones-Grueiro, M., Bernal-de Lázaro, J. M., Verde, C., Prieto-Moreno, A., & Llanes-Santiago, O. (2018). Comparison of classifiers for leak location in water distribution networks. IFAC-PapersOnLine, 51(24), 407-413.
Quiñones-Grueiro, M., Verde, C., & Llanes-Santiago, O. (2019). Novel Leak Location Approach in Water Distribution Networks with Zone Clustering and Classification. In Mexican Conference on Pattern Recognition (pp. 37-46). Springer, Cham.
Refaeilzadeh, p., Tang, L., and Liu, H. (2009). Cross-validation, Springer, Berlin, 532-538.
Romano, M., Kapelan, Z., & Savić, D. A. (2010). Real-time leak detection in water distribution systems. In Water Distribution Systems Analysis 2010 (pp. 1074-1082).
Sanz, G., Pérez, R., Kapelan, Z., & Savic, D. (2016). Leak detection and localization through demand components calibration. Journal of Water Resources Planning and Management, 142(2), 04015057.
Sophocleous, S., Savić, D., & Kapelan, Z. (2019). Leak localization in a real water distribution network based on search-space reduction. Journal of Water Resources Planning and Management, 145(7), 04019024.
Vapnik, V. N., and Kotz, S. (1982). Estimation of dependences based on empirical data: springer series in statistics, Springer, Berlin.
Weston, J., & Watkins, C. (1998). Multi-class support vector machines (pp. 98-04). Technical Report CSD-TR-98-04, Department of Computer Science, Royal Holloway, University of London, May.
Wu, Z. Y. (2009). Unified parameter optimisation approach for leakage detection and extended-period simulation model calibration. Urban Water Journal, 6(1), 53-67.
Zhang, Q., Wu, Z. Y., Zhao, M., Qi, J., Huang, Y., & Zhao, H. (2016). Leakage zone identification in large-scale water distribution systems using multiclass support vector machines. Journal of Water Resources Planning and Management, 142(11), 04016042.
Zhou, Z. J., Hu, C. H., Xu, D. L., Yang, J. B., & Zhou, D. H. (2011). Bayesian reasoning approach based recursive algorithm for online updating belief rule based expert system of pipeline leak detection. Expert Systems with Applications, 38(4), 3937-3943.