کاربرد الگوریتم تکامل تفاضلی پویای تطبیقی در تخصیص بهینه منابع آب (مطالعه موردی: سد بافت کرمان)

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه علوم کامپیوتر، دانشکده ریاضیات - آمار و علوم کامپیوتر، دانشگاه سیستان و بلوچستان، زاهدان، ایران

2 گروه اقتصاد کشاورزی، پژوهشکده کشاورزی، پژوهشگاه زابل، زابل، ایران

10.22125/iwe.2023.173291

چکیده

استفاده بهینه از منابع آبی سدها به دلیل خشک‌سالی‌های مستمر و کم‌آبی‌های موجود، چالشی جدی در مدیریت و مهندسی منابع آب است. ازاین‌رو، به‌منظور مدیریت جامع در مقدار مصرف منابع آبی سدها، ایجاد سازوکار کنترلی در رهاسازی منابع آبی بسیار ضروری است. در این مطالعه، یک الگوریتم‌ تکاملی بهبودیافته با عنوان «تکامل تفاضلی تطبیقی با انتخاب بازه‌های افزایشی پویا (ADECDII)» برای بهینه‌سازی سیستم آبی تک مخزنی پیشنهاد شد. کارایی رویکرد ADECDII در استفاده از طرح انتخاب بازه‌های افزایشی پویا برای تنظیم پارامترهای نسخه تکامل تفاضلی کلاسیک (DE) بود. مدسازی مسئله نیز به صورت یک مسئله کمینه‌سازی مقید با تابع هدف مقادیر خطا بین تقاضای حقیقی و آب رهاسازی شده، با دوره‌های زمانی یک‌ماهه بین سال‌های 1397-1387، بر روی سد بافت کرمان تعریف شد. ارزیابی عملکرد ADECDII با شش الگوریتم پیشرفته مقایسه گردید. بر اساس نتایج آماری، کمترین میانگین کمبودهای آبی سد با میانگین خطای تقریباً صفر (31-10>) در واحد میلیون مترمکعب برای ADECDII ثبت شد که کارآمدی رویکرد پیشنهادی را در تخصیص بهینه مقادیر آب رهاسازی شده اثبات کرد. این در حالی است که، سایر الگوریتم‌های مقایسه شونده نتوانستند کمبود واقعی کمتر از 37/0 میلیون مترمکعب گزارش کنند. میانگین زمان اجرای ADECDII با اندازه 15/7 ثانیه به دست آمد که نسبت به DE اختلاف سه‌ثانیه‌ای داشت. همچنین، ADECDII در برگزاری آزمون‌های شاخص قابلیت اطمینان، شاخص آسیب‌پذیری، شاخص برگشت‌پذیری، شاخص پایداری، اختلاف مقادیر رهاسازی نسبت به مقادیر تقاضا حقیقی در یک متوسط سالانه و نرخ همگرایی، به‌وضوح برتری عملکرد بالاتری در مقایسه با سایر الگوریتم‌های شرکت‌کننده در رقابت نشان داد.
 

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Application of Adaptive Dynamic Differential Evolution Algorithm in Optimal Allocation of Water Resources (Case Study: Kerman Baft Dam)

نویسندگان [English]

  • Hossein Mohammadi 1
  • Zahra Ghaffari Moghadam 2
1 Department of Computer Science, Faculty of Mathematics - Statistics and Computer Science, University of Sistan and Baluchestan, Iran
2 Assistant Professor, Department of Agricultural Economics, Agricultural Institute, Research Institute of zabol, Zabol, Iran
چکیده [English]

Optimal use of dam’s water resources is a serious challenge in water resources management and engineering, due to continuous droughts and water shortages. Therefore, in order to comprehensively management in the used amount of dam’s water resources, it is essential to establish a control mechanism in the release of water resources. In this study, an improved evolutionary algorithm entitled "Adaptive Differential Evolution by Choosing of Dynamic incremental intervals (ADECDII)" was proposed to optimize the single-reservoir water system. Efficiency of the ADECDII approach was to use the dynamic incremental interval selection scheme for parameters adjustment of the classical differential evolution (DE). Problem modeling was defined as a problem of minimization with the objective function of error values between real demand and released water, with one-month time periods between 2008-2018 years, on Baft Dam in Kerman province. ADECDII performance evaluation was compared with six advanced algorithms. Based on the statistical results, lowest average of the dam water shortages with mean error of zero ( ) MCM (Million Cubic Meters) was recorded for ADECDII, which proved the efficiency of the proposed approach in the optimal allocation of released water values. This is while, other comparable algorithms could not report a real shortage of less than 0.37 MCM. The average of runtime for ADECDII was 7.15 sec, which was three seconds longer than DE runtime. Also, ADECDII in the tests of reliability index, vulnerability index, resilience index, sustainability index, difference absolute error values between released water values and total demand in an annual average, and convergence rate clearly showed a higher performance in compared to other comparable algorithms.
 

کلیدواژه‌ها [English]

  • Optimal efficiency of water resources
  • Single-reservoir system
  • Differential Evolution
  • Dynamic adaptive scheme of parameters
  • Water management
Abdelkader, E.M., A. Al-Sakkaf, G. Alfalah, and N. Elshaboury. 2022. Hybrid Differential Evolution-Based Regression Tree Model for Predicting Downstream Dam Hazard Potential. Sustainability 14:3013.
Afshar, A., M.J. Emami Skardi, and F. Masoumi. 2015. Optimizing water supply and hydropower reservoir operation rule curves: an imperialist competitive algorithm approach. Engineering Optimization 47:1208-1225.
Ahmadianfar, I., A. Kheyrandish, M. Jamei, and B. Gharabaghi. 2021. Optimizing operating rules for multi-reservoir hydropower generation systems: An adaptive hybrid differential evolution algorithm. Renewable Energy 167:774-790.
Ali, M.Z., N.H. Awad, and P.N. Suganthan. 2015. Multi-population differential evolution with balanced ensemble of mutation strategies for large-scale global optimization. Applied Soft Computing 33:304-327.
Allawi, M.F., O. Jaafar, F.M. Hamzah, M. Ehteram, M.S. Hossain, and A. El-Shafie. 2018. Operating a reservoir system based on the shark machine learning algorithm. Environmental Earth Sciences 77:366.
Amirkhani, M., O. Bozorg-Haddad, A. Azarnivand, and H.A. Loáiciga. 2017. Multiobjective optimal operation of gated spillways. Journal of Irrigation and Drainage Engineering 143:04016078.
Atashpaz-Gargari, E., and C. Lucas. 2007. Imperialist competitive algorithm: an algorithm for optimization inspired by imperialistic competition. In 2007 IEEE congress on evolutionary computation. Ieee, 4661-4667.
Beiramipoor, S., K. Qaderi, H. Haghjuie, and M. Rahimpour. 2018. Reservoir water quality management of Baft dam through selected drainage from the dam outlet locations using the model CE-QUAL-W2. Irrigation and Water Engineering 8:237-251.
Bozorg-Haddad, O., I. Karimirad, S. Seifollahi-Aghmiuni, and H.A. Loáiciga. 2015. Development and application of the bat algorithm for optimizing the operation of reservoir systems. Journal of Water Resources Planning and Management 141:04014097.
Chen, D., A.S. Leon, S.P. Engle, C. Fuentes, and Q. Chen. 2017. Offline training for improving online performance of a genetic algorithm based optimization model for hourly multi-reservoir operation. Environmental modelling & software 96:46-57.
Cheng, C.-T., W.-C. Wang, D.-M. Xu, and K. Chau. 2008. Optimizing hydropower reservoir operation using hybrid genetic algorithm and chaos. Water Resources Management 22:895-909.
Choong, S.-M., A. El-Shafie, and W. Wan Mohtar. 2017. Optimisation of multiple hydropower reservoir operation using artificial bee colony algorithm. Water resources management 31:1397-1411.
Derrac, J., S. García, D. Molina, and F. Herrera. 2011. A practical tutorial on the use of nonparametric statistical tests as a methodology for comparing evolutionary and swarm intelligence algorithms. Swarm and Evolutionary Computation 1:3-18.
Donyaii, A., A. Sarraf, and H. Ahmadi. 2020. A novel approach to supply the water reservoir demand based on a hybrid whale optimization algorithm. Shock and Vibration 2020:
Draa, A., S. Bouzoubia, and I. Boukhalfa. 2015. A sinusoidal differential evolution algorithm for numerical optimisation. Applied Soft Computing 27:99-126.
Ehteram, M., H. Karami, and S. Farzin. 2018a. Reducing irrigation deficiencies based optimizing model for multi-reservoir systems utilizing spider monkey algorithm. Water Resources Management 32:2315-2334.
Ehteram, M., S.-F. Mousavi, H. Karami, S. Farzin, M. Emami, F.B. Othman, Z. Amini, O. Kisi, and A. El-Shafie. 2017. Fast convergence optimization model for single and multi-purposes reservoirs using hybrid algorithm. Advanced Engineering Informatics 32:287-298.
Ehteram, M., V. P Singh, H. Karami, K. Hosseini, M. Dianatikhah, M. Hossain, C. Ming Fai, and A. El-Shafie. 2018b. Irrigation management based on reservoir operation with an improved weed algorithm. Water 10:1267.
Fallah-Mehdipour, E., O.B. Haddad, and M. Mariño. 2012. Real-time operation of reservoir system by genetic programming. Water resources management 26:4091-4103.
Fang, G.-h., C.-j. Wu, T. Liao, X.-f. Huang, and B. Qu. 2020. A two-layer improved invasive weed optimization algorithm for optimal operation of cascade reservoirs. Water Supply 20:2311-2323.
Haddad, O.B., S.-M. Hosseini-Moghari, and H.A. Loáiciga. 2016. Biogeography-based optimization algorithm for optimal operation of reservoir systems. Journal of Water Resources Planning and Management 142:04015034.
Hashimoto, T., J.R. Stedinger, and D.P. Loucks. 1982. Reliability, resiliency, and vulnerability criteria for water resource system performance evaluation. Water resources research 18:14-20.
Holland, J.H. 1992. Genetic algorithms. Scientific american 267:66-73.
Hossain, M.S., and A. El-Shafie. 2013. Application of artificial bee colony (ABC) algorithm in search of optimal release of Aswan High Dam. In Journal of Physics: Conference Series. IOP Publishing, 012001.
Karaboga, D., and B. Basturk. 2007. Artificial bee colony (ABC) optimization algorithm for solving constrained optimization problems. In International fuzzy systems association world congress. Springer, 789-798.
Khorashadizadeh, M., G. Azizyan, S. Hashemi Monfared, A. Akbarpour, and A. Shabani. 2020. A timetable and spatial planning for pollutant entrance to the river. International Journal of Environmental Science and Technology 17:4171-4188.
Khorashadizadeh, M., G. Azizyan, S. Hashemi Monfared, A. Akbarpour, and A. Shabani. 2022. Presenting a two-objective model to manage spatiotemporal pollution distribution in river with consideration of consumer demand. International Journal of Environmental Science and Technology 19:4459-4480.
Khorashadizadeh, M., S.A. Hashemimonfared, A. Akbarpour, and M. Pourreza-bilondi. 2016. Uncertainty assessment of pollution transport model using GLUE method. Iranian Journal of Irrigation & Drainage 10:284-293.
Mansouri, A., B. Aminnejad, and H. Ahmadi. 2018. Introducing modified version of penguins search optimization algorithm (PeSOA) and its application in optimal operation of reservoir systems. Water Science and Technology: Water Supply 18:1484-1496.
Mehrabian, A.R., and C. Lucas. 2006. A novel numerical optimization algorithm inspired from weed colonization. Ecological informatics 1:355-366.
Mohammadrezapour, O., I. Yoosefdoost, and M. Ebrahimi. 2019. Cuckoo optimization algorithm in optimal water allocation and crop planning under various weather conditions (case study: Qazvin plain, Iran). Neural Computing and Applications 31:1879-1892.
Pant, M. 2022. Differential Evolution for Water Management Problems. In Differential Evolution: From Theory to Practice. Springer, 197-214.
Qaderi, K., S. Akbarifard, M.R. Madadi, and B. Bakhtiari. 2018. Optimal operation of multi-reservoirs by water cycle algorithm. In Proceedings of the Institution of Civil Engineers-Water Management. Thomas Telford Ltd, 179-190.
Rao, S.S. 2019. Engineering optimization: theory and practice. John Wiley & Sons,
Raso, L., P.-O. Malaterre, and J.-C. Bader. 2017. Effective streamflow process modeling for optimal reservoir operation using stochastic dual dynamic programming. Journal of water resources planning and management 143:04017003.
Rath, A., and P.C. Swain. 2018. Water allocation from Hirakud Dam, Odisha, India for irrigation and power generation using optimization techniques. ISH Journal of Hydraulic Engineering 1-15.
Safavi, H., and M. Gol Mohammadi. 2016. Evaluating the water resource systems performance using fuzzy reliability, resilience and vulnerability. Iran-water resources research 12:68-83.
Sandoval-Solis, S., D. McKinney, and D.P. Loucks. 2011. Sustainability index for water resources planning and management. Journal of water resources planning and management 137:381-390.
Sedighkia, M., B. Datta, and A. Abdoli. 2021. Optimizing reservoir operation to avoid downstream physical habitat loss using coupled ANFIS-metaheuristic model. Earth Science Informatics 14:2203-2220.
Simon, D. 2008. Biogeography-based optimization. IEEE transactions on evolutionary computation 12:702-713.
Srinivasan, K., and K. Kumar. 2018. Multi-objective simulation-optimization model for long-term reservoir operation using piecewise linear hedging rule. Water resources management 32:1901-1911.
Storn, R., and K. Price. 1997. Differential evolution–a simple and efficient heuristic for global optimization over continuous spaces. Journal of global optimization 11:341-359.
Thongwan, T., A. Kangrang, and H. Prasanchum. 2019. Multi-objective future rule curves using conditional tabu search algorithm and conditional genetic algorithm for reservoir operation. Heliyon 5:e02401.
Yang, S., D. Yang, J. Chen, and B. Zhao. 2019. Real-time reservoir operation using recurrent neural networks and inflow forecast from a distributed hydrological model. Journal of Hydrology 579:124229.