کنترل جریان و انتقال رسوب با استفاده ازعملکرد دو مدل هیدرولوژیکی و هیدرولیکی در حوضه رودخانه جاجرود

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مهندسی عمران، واحد بین الملل کیش، دانشگاه آزاد اسلامی، جزیره کیش، ایران

2 گروه مهندسی عمران، واحد شهر قدس، دانشگاه آزاد اسلامی، تهران، ایران

چکیده

اخیرا، به کار گیری از مدلسازی هیدرولوژی و هیدرولیکی برای ارزیابی فرسایش و اقداماتی در جهت کاهش آورد رسوبی مطرح است. در تحقیق حاضر، با استفاده از دو مدل HEC RAS و SWAT میزان رسوبات انتقالی و راهکارهای کنترل آن در حوضه رودخانه جارجرود بررسی شد. رفتار هیدرولوژیکی حوضه برای برآورد میزان جریان رسوب و مناطق فرسایش پذیر حوضه با استفاده از مدل SWAT بررسی شد. واسنجی و تحلیل عدم قطعیت مدل توسط نرم افزار swat cup و الگوریتم sufi2 انجام پذیرفت. شاخص های R2 و ناش ساتکلیف(NS) به منظور ارزیابی توانایی مدل SWAT در جهت شبیه سازی جریان و رسوب ایستگاه ماملو برای بازه کالیبراسیون 2002تا2013 به ترتیب برابر 0.77 و 0.89 و همچنین بازه صحت سنجی 2014 تا2017 به ترتیب برابر 0.63و 0.72 در جهت استخراج رواناب به دست آمد. میزان رسوب برآوردی مدل SWAT در بازه کالیبراسیون براساس شاخص های R2 و ناش ساتکلیف(NS) برابر 0.67، 0.82 همچنین بازه صحت سنجی برابر 0.58، 0.64 استخراج شد. پس از شبیه سازی از آنجایی که مدل swat قابلیت طراحی سازه کنترل رسوب نداشته از مدل هیدرولیکی دو بعدی HEC RAS با قابلیت تعریف نقشه پوشش گیاهی و اقدامات سازه‌ای استفاده گردید. باتوجه به قابلیت تعریف نقشه پوشش گیاهی بر رفتار جریان رسوب مشخص گردید. دست آخر نتایج حاصل از تلفیق دو مدل SWAT و HEC RAS در جهت بهره گیری اقدامات سازه ای و اصلاح نوع پوشش گیاهی در راستای برآورد میزان رسوبات انتقالی به مخزن سد ماملو بیانگر کاهش میزان رسوبات انقالی به میزان 17 درصد بوده است.

کلیدواژه‌ها

موضوعات


عنوان مقاله [English]

Flow control and sediment transfer using the performance of two hydrological and hydraulic models in the Jarjroud river basin

نویسندگان [English]

  • Babak Aminnejad 1
  • Ali Asghari 1
  • Hossein Ebrahimi 2
1 Department of Civil Engineering، Kish international Branch، Islamic Azad University، Kish Island، Iran.
2 Department of Civil Engineering، Shahr-e-Qods international Branch، Islamic Azad University، Tehran، Iran.
چکیده [English]

In this research, using HEC RAS and SWAT models, the flow rate, transfer of sediments, and sediment control strategies of the Jajroud River watershed, . The hydrological behavior of the watershed was investigated to estimate the amount of sediment flow and erodible areas of the watershed to apply non-structural solutions using the SWAT model. R2 and Nash-Sutcliffe (NS) indices to evaluate the SWAT model's ability to simulate the flow and sediment of Mamlo station for the calibration period of 2002 to 2013 are 0.77 and 0.89, respectively, and the validation period from 2014 to 2017 is 0.63 and 0.63, respectively. 0.72 was obtained in the direction of extracting runoff. The estimated sediment amount of the SWAT model in the calibration interval was extracted based on the R2 and Nash Sutcliffe (NS) indices equal to 0.67, 0.82, and the validation interval equal to 0.58, 0.64. After the hydrological simulation, since the SWAT model cannot design the sediment control structure, the HEC RAS two-dimensional hydraulic model was used, which can define the vegetation map and structural measures to control the sediment in the area. One of the capabilities of the two-dimensional model HEC-RAS can define the amount of Manning's coefficient . Finally, the results of the integration of SWAT and HEC RAS models to use structural measures and modify the type of vegetation in To estimate the amount of transported sediments to the reservoir of Mamlo dam, it has been shown that the amount of transported sediments has decreased by 17% .

کلیدواژه‌ها [English]

  • flow simulation
  • Jarjroud river
  • swat
  • hec ras
  • sediment control
Arnold J.G., Srinivasan R., Muttiah R.S., and Williams J.R. 1998. Large area hydrologic modeling and assessment part I: model development. Journal of the American Water Resource Association, 34 (1): 73–89.
Abbaspour K.C., Rouholahnejad E., Vaghefi S., Srinivasan R., Yang H., and Klve B. 2015. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. Journal of Hydrology, 524: 733–752.
Abebe Tadesse.,2021. Assessment of Discharge and Sediment Flows in a River Through a Combined Hydraulic and Hydrologic Routing Technique. research square. 10.21203/rs.3.rs-459084/v2
Arnab Ghosh, Malabika Biswas Roy, Pankaj Kumar Roy, Sanchayan Mukherjee., 2020. Assessing the nature of sediment transport with bridge scour by 1D sediment transport model in the sub‑catchment basin of Bhagirathi–Hooghly river. Modeling Earth Systems and Environment.
Abbaspour KC (2007) User manual for SWAT-CUP, SWAT calibration, and uncertainty analysis programs. Swiss Federal Institute of Aquatic Science and Technology, Eawag, Dübendorf, Switzerland
Brunner, G. W. (2016). HEC-RAS river analysis system 2D modeling user’s manual. US Army Corps of Engineers—Hydrologic Engineering Center, 1-171.
Baron, J.S., Poff, N.L., Angermeier, P.L., Dahm, C.N., Gleick, P.H., Hairston, N.G., Jackson, R.B., Johnston, C.A., Richter, B.D., Steinman, A.D., 2002. Meeting ecological and societal needs for freshwater. Ecological Applications, 12(5), 1247– 1260.
Brunner, G.W. Using HEC-RAS for Dam Break Studies. 2014 Available online: https://www.hec.usace.army.mil/publications (accessed on 2 February 2020).
Brunner, G.W.; CEIWR-HEC. HEC-RAS River Analysis System, 2D Modeling User’s Manual. Version 5.0. 2016. Available online: https://www.hec.usace.army.mil/software/hec-ras/documentation (accessed on 2 February 2020).
Chow.v.t.(1959). Open channel hydraulics, mcgraw-hill, new York,pp.110-113
Carpenter, S.R., Caraco, N.F., Correll, D.L., Howarth, R.W., Sharpley, A.N. and Smith V.H. (1998). Nonpoint pollution of surface waters with phosphorus and nitrogen. Journal of Ecological Applications, 8 (3), 559–560 Deasy,
C., Baxendale, S.A., Heathwaite, A.L., Ridall, G., Hodgkinson, R., Brazier, R.E., 2011. Advancing understanding of runoff and sediment transfers in agricultural catchments through simultaneous observations across scales. Earth Surf. Process. Landforms, 36, 1749–1760.
Duan Z., Song X., and Liu J. 2009. Application of SWAT for sediment yield estimation in a mountainous agricultural basin, In Geoinformatics, 2009 17th International Conference on IEEE. (pp. 1-5).
Guchhait SK, Islam A, Ghosh S, Das BC, Maji NK (2016) Role of hydrological regime and foodplain sediments in channel instability of the Bhagirathi River, Ganga-Brahmaputra Delta, India. Phys Geogr. https://doi.org/10.1080/02723646.2016.1230986
Hosseini SH, Khaleghi MR (2020) Application of SWAT model and SWAT-CUP software in simulation and analysis of sediment uncertainty in arid and semi-arid watersheds (case study: the Zoshk-Abardeh watershed). Model Earth Syst Environ. https ://doi.org/10.1007/s40808-020-00846-2
Haddadchi, A., M.H. Omid and A.A. Dehghani. 2011. Evaluation of Bed Load Discharge Formulas in Alpine Gravel Bed Rivers (Case study: Chehel Chai river in Golestan province). Journal of Water and Soil Conservation, 18: 149-165 (In Persian).
Ijam,A.Z & E.R. Tarawneh (2012). Assessment of sediment yield for Wala dam catchment area in Jordan. European Water. 38: 43-58.
Isaac N, Eldho TI (2016) Sediment management studies of a run-ofthe-river hydroelectric project using numerical and physical model simulation. Int J River Basin Manag 14(2):165–175. https://doi.org/10.1080/15715124.2015.1105234
Jens Kiesel, Britta Schmalz, Gary L. Brown, Nicola Fohrer(2013) Application of a hydrological-hydraulic modelling cascade in lowlands for investigating water and sediment fluxes in catchment, channel and reach. Hydrol. Hydromech., 61, 4, 334–346
Kavian A., Bahrami M., and Rouhani H. 2014. Evaluation of the Efficiency of SWAT Model in Estimating Surface Runoff in kachik Watershed of Golestan Province. Watershed Research (Research and construction). 103. (In Persian)
Keivanlou, M. 2013. Investigation the Impacts of Mining River Materials on Hydraulic Characteristics and Transverse Structures Using a Mathematical Model (Case Study: Talar River). M.Sc. Thesis, Sari Agricultural Sciences and Natural Resources University, Sari, Iran, 120 pp (In Persian).
Khalid K, Ali MF, Abd Rahman NF, Mispan MR, Haron SH, Othman Z, Bachok MF (2016) Sensitivity analysis in the watershed model using SUFI-2 algorithm. International conference on efcient & sustainable water systems management toward worth living development, 2nd EWaS 2016. Procedia Eng 162:441– 447. https://doi.org/10.1016/j.proeng.2016.11.086
Mihu-Pintilie, A.; Cîmpianu, C.I.; Stoleriu, C.C.; Pérez, M.N.; Paveluc, L.E. Using High-Density LiDAR Data and 2D Streamflow Hydraulic Modeling to Improve Urban Flood Hazard Maps: A HEC-RAS Multi-Scenario Approach. Water 2019, 11, 1832. [CrossRef]
Niraula, R., Kalin, L., Srivastava, P. and Anderson Ch. (2013). Identifying critical source areas of nonpoint source pollution with SWAT and GWLF. Journal of Ecological Modelling, 268, 123– 133.
Neitsch, S. L., J. G. Arnold, J. R. Kiniry, J. R. Williams and K. W. King. 2002. Soil and water assessment tool: Theoretical documentation. Blackland Research Center, Texas Agricultural Experiment Station
Neitsch SL, Arnold JG, Kiniry JR, Williams JR, King KW (2005) Soil and water assessment tool theoretical documentation—version 2005.In: Soil and Water Research Laboratory, Agricultural Research Service. US Department of Agriculture, Temple
Neitsch, S.L., Arnold, J.G., Kiniry, J.R., Williams, J. R., 2011. Soil and water assessment tool theoretical documentation version 2009. Texas Water Resources InstituteOchiere HO, Onyando JO, Kamau DN (2015) Simulation of sediment transport in the canal using the hec-ras (hydrologic engineering centre–river analysis system). In an Underground Canal in Southwest Kano Irrigation Scheme–Kenya. Int J Eng Sci Invent 4(9):15–31
Pathan AI, Agnihotri PG (2020) Application of new HEC-RAS version 5 for 1D hydrodynamic food modeling with special reference through geospatial techniques: a case of River Purna at Navsari, Gujarat, India. Model Earth Syst Environ. https://doi. org/10.1007/s40808-020-00961-0
Patel, D.P.; Ramirez, J.A.; Srivastava, P.K.; Bray, M.; Han, D. Assessment of flood inundation mapping of Surat city by coupled 1D/2D hydrodynamic modeling: A case application of the new HEC-RAS 5. Nat. Hazards 2017, 89, 93–130. [CrossRef]
Prestininzi, P.; Di Baldassarre, G.; Schumann, G.; Bates, P. Selecting the appropriate hydraulic model structure using low-resolution satellite imagery. Adv. Water Resour. 2011, 34, 38–46. [CrossRef]
Patel, D.P.; Ramirez, J.A.; Srivastava, P.K.; Bray, M.; Han, D. Assessment of flood inundation mapping of Surat city by coupled 1D/2D hydrodynamic modeling: A case application of the new HEC-RAS 5. Nat. Hazards 2017, 89, 93–130. [CrossRef]
Rostamian R., Jaleh A., Afyuni M., Mousavi S. F., Heidarpour M., Jalalian A., and Abbaspour K. C. 2008. Application of a SWAT model for estimating runoff and sediment in two mountainous basins in central Iran. Hydrological Sciences Journal, 53 (5): 977-988.
Shen, Z.Y., Liao, Q., Hong, Q. and Gong, Y.W. (2012). An overview of research on agriculture non-point source pollution modeling in china. Purif. Journal of Technology ,84, 104-111.
Singh, V.P., 1995. Watershed modeling. Singh, V.P. ed., Computer Models of Watershed Hydrology (1st Edition), 1-22. Highlands Ranch, Colorado: Water Resources Publications.
Shimelis, G., Setegn, R., Srinivasan, A., Melesse, M., Bijan, D., 2010. SWAT model application and prediction uncertainty analysis in the Lake Tana Basin, Ethiopia, Hydrol. Process. 24, 357–367.
Scavia, D., Allan, J. D., Arend, K.K., Bartell, S., Beletsky, D., Bosch, N., Brandt, S. B., Briland, R .D., Daloğlu, I., DePinto, J. V., Dolan, D. M., Anne Evans, M., Farmer, T.M., Goto, D., Han, H., Höök, T.O., Knight, R., Ludsin, S. A., Mason, D., Michalak, A. M., Richards, R. P., Roberts, J.J., Rucinski, D. K., Rutherford, E., Schwab, D. J., Sesterhenn, T. M., Zhang, H. and Zhou, Y. (2014). Assessing and addressing the reeutrophication of Lake Erie: Central basin hypoxia. Journal of Great Lakes Research, 40, 226-246.
Singh AK, Kumar S, Naithani S (2020) Modelling runof and sediment yield using GeoWEPP: a study in a watershed of lesser Himalayan landscape, India. Model Earth Syst Environ. https:// doi.org/10.1007/s40808-020-00964-x
Shamshirband S, Jafari Nodoushan E, Adolf J, Abdul Manaf A (2019) Ensemble models with uncertainty analysis for multiday ahead forecasting of chlorophyll a concentration in coastal waters. Eng Appl Comput Fluid Mech 13(1):91–101. https:// doi.org/10.1080/19942060.2018.1553742
Tolson, B. A. and C. A. Shoemaker. 2004. Watershed modeling of the Cannonsville basin using SWAT2000: Model development, calibration and validation for the prediction of flow, sediment and phosphorus transport to the Cannonsville reservoir. Technical Report, School of Civil and Environmental Engineering, Cornell Univ., Ithaca, N. Y.
Uri, N.D., 2000. Agriculture and the environment – the problem of soil erosion. Journal of Sustainable Agriculture, 16(4), 71–94.
Veihe, A., Jensen, N.H., Schiotz, I.G., Nielsen, S.L., 2011. Magnitude and processes of bank erosion at a small stream in Denmark. Hydrological Processes, 25, 1597–1613.
Wu, Y. and Chen, J.( 2013). Investigating the effects of point source and nonpoint source pollution on the water quality of the East River (Dongjiang) in South China. Journal of Ecological Indicators, 32, 294– 304.
Wischmeier WH, Smith DD (1978) Predicting rainfall erosion losses—a guide for conservation planning. U.S. Department of Agriculture, Agriculture Handbook, vol 537
YOUNES KAZEMI, ALI SALAJEGHEH, MOHAMMAD MAHDAVI, NOREDIN ROSTAMI.2011. ESTIMATING THE BED LOAD TO SUSPENDED LOAD RATIO IN CENTRAL ALBORZ RIVERS; IRAN (CASE STUDY: TALEGHAN AND JAJROUD RIVERS). International Journal of Agriculture: Research and Review. Vol., 1 (1), 44-47, 2011