شبیه‌سازی رگبار- آب‌گرفتگی مبتنی بر سامانه اطلاعات جغرافیایی در حوضه شهری دامغان

نوع مقاله : مقاله پژوهشی

نویسندگان

1 گروه مرتع وآبخیزداری، دانشگاه علوم کشاورزی و منابع طبیعی، ساری، ایران

2 استاد دانشگاه علوم کشاورزی ومنابع طبیعی ساری

3 استادیارگروه مرتع و آبخیزداری دانشگاه علوم کشاورزی و منابع طبیعی ساری، ایران

چکیده

با افزایش شهرنشینی، شرایط سطح زمین و آب و هوا توسط فعالیت­های انسانی تغییر کرده است. این امر منتج به جاری شدن سیلاب و مشکلات آبگرفتگی مکرر در مناطق شهری می­شود. مدل­های رگبار-آبگرفتگی مبتنی بر هیدرولوژی و هیدرودینامیک به تعداد زیادی داده ورودی (جزئیات زمین، سیستم فاضلاب و داده کاربری اراضی) نیازمند است. در این مقاله به منظور تعیین سریع وضعیت آبگرفتگی تنها با چند داده ورودی و معمولا در دسترس، یک روش شبیه‌سازی رگبار- آبگرفتگی شهری (USISM) مبتنی­ بر سامانه اطلاعات جغرافیایی (GIS) ارائه شده است. روش USISM یک نوع مدل هیدرولوژیکی توزیعی ساده شده بر اساس مدل ارتفاع رقومی می­باشد. در این روش، فرورفتگی­ها در زمین به عنوان سطوح اصلی آبگرفتگی در نظر گرفته می­شوند. مقدار آبی که می­تواند در هر فرورفتگی­ ذخیره شود توزیع نهایی آبگرفتگی را نشان می­دهد. سطح رواناب حوضه و حداکثر حجم ذخیره برای هر فرورفتگی­ و جهت جریان بین این فرورفتگی­ها همه در شبیه­سازی نهایی آبگرفتگی در نظر گرفته شده­اند. روش سازمان حفاظت خاک امریکا برای محاسبه رواناب رگبار، و یک معادله بیلان آبی برای محاسبه ذخیره آب در هر فرورفتگی­ استفاده شده است. نتیجه نشان می­دهد که روش USISM می­تواند مکان­های نهایی آبگرفتگی در منطقه شهری را پیدا و عمق و سطح آبگرفتگی را به سرعت محاسبه نماید. روش USISM برای شبیه­سازی رگبارهای با مدت زمان کوتاه در یک منطقه شهری با داده­های ورودی محدود و معمولا در دسترس، ارزشمند است.

کلیدواژه‌ها


عنوان مقاله [English]

Urban Storm-Inundation Simulation Based-on GIS In Damghan Urban Watershed

نویسندگان [English]

  • Ebrahim Yousefi Mobarhan 1
  • Karim Solaimani 2
  • ghorban vahabzadeh 3
1 1 Ph.D. Student, Sari Agricultural Sciences and Natural Resources University, Sari, Iran
2 Professor of Sari Agricultural Science and Natural Resources.Department of rang and watershed managemen
3 Assistance Professor, College of Natural Resources, Sari Agricultural Science and Natural Resources University.
چکیده [English]

With the increasing of urbanization, conditions of the underlying surface and climate conditions have been changed by human activities. This resulted in more frequent floods and inundation problems in urban areas. Storm-inundation Models based on hydrology and hydrodynamics require a large amount of input data (detailed terrain, sewer system and land use data). In this paper, in order to determine inundation conditions quickly with only a few usually available input data, an urban storm-inundation simulation method (USISM) based on geographic Information System (GIS) is proposed. The USISM is a simplified method of distributed hydrological model based on DEM, in this method depressions in terrain are regarded as the basic inundated area. The amount of water that can be stored in a depression indicates the final inundation distribution. The runoff and maximum storage volume for each depression and the flow direction between these depressions are all considered in the final inundation simulation. The SCS method is used to calculate storm runoff and a water balance equation is used to calculate the water storage in each depression. The result reveals that the USISM method could find the inundation locations in the Damghan Urban Watershed and quickly calculate inundation depth and area. The USISM is valuable for simulating storms of short duration in an Urban Watershed with a few in commonly available input data.
 

کلیدواژه‌ها [English]

  • Keywords: Depression
  • GIS
  • Urban Watershed
  • USISM
منابع
کریمی، و. 1392. آنالیز و پیش­بینی سیلاب شهری بابلسر با استفاده از مدل­سازی وقایع رگباری. پایان­نامه دکتری، دانشگاه علوم کشاورزی و منابع طبیعی ساری.
Amaguchi, H., A. Kawamura, J. Olsson and T. Takasaki. 2012. Development and testing of a distributed urban storm runoff event model with a vector-based catchment delineation. J. Hydrol. 420–421, 205–215.
Apel, H., G. T. Aronica, H. Kreibich and A. H. Thieken. 2009. Flood risk analyses–how detailed do we need to be? Nat. Hazards 49, 79–98.
Apirumanekul, C., 2001. Modeling of Urban Flooding in Dhaka City. Master Thesis No. WM-00-13, Asian Institute of Technology, Bangkok.
Bates, P. D and A. P. J De Roo. 2000. A simple
 
raster-based model for flood inundation simulation. J. Hydrol. 236 (1): 54–77.
 Bonta, J. V. 2004. Development and utility of Huff curves for disaggregating precipitation amounts. Appl. Eng. Agric. 20 (5): 641–653.
CH2M HILL, 2013. ISIS FAST. <http://www.isisuser.com/isis/isisfast.asp>.
Chen, J., A. A. Hill and L. D. Urbano. 2009. A GIS-based model for urban flood inundation. J. Hydrol. 373, 184–193.
Cheng, X. T. 2010. Urban water disasters and strategy of comprehensive control of water disaster. J. Catastrophol. 25 (s): 10–15.
 Dottori, F and E. Todini. 2011. Developments of a flood inundation model based on the cellular. : Testing different methods to improve model performance. Phys. Chem. Earth Parts ABC 36: 266–280.
Fernandez, D. S and M. A. Lutz. 2010. Urban flood hazard zoning in Tucuman province, Argentina, using GIS and multi criteria decision analysis. Engineering geology. 111: 90-98.
Fewtrell, J. T., A. Duncan, C. C. Sampson, J. C. Neal, and P. D. Bates. 2011. Benchmrking urban flood models of varying complexity and scale using higt resolution terrestrial LIDAR data. Physics and Chemistry of the Earth. In press. DOI: 10. 10161j. pce. 2010. 12. 011.
Gallo, E. L., P. D. Brooks, K. A. Lohse and J. E. T. Mclain. 2013. Land cover controls on summer discharge and runoff solution chemistry of semi-arid urban.catchments. J. Hydrol. 485: 37–53.
Ghimire, B., A. S. Chen, M. Guidolin, E. C. Keedwell, S. Djordjevic and D. A. Savic´. 2013. Formulation of a fast 2D urban pluvial flood model using a cellular automata approach. J. Hydro inform. 15 (3): 676–686.
Gouldby, B., P. Sayers, J. Mulet-Marti, M. A. A. M. Hassan and D. Benwell. 2008. A methodology for regional-scale flood risk assessment. Proc. ICE-Water Manage. 161 (3): 169–182.
Hellweger, R. 1996. AGREE.aml. Center for Research in Water Resources, the University of Texas at Austin, Austin, TX.
Hsu, M. H., S. H. Chen, and T. J. Chang. 2000. Inundation simulation for urban drainage basin with storm drainage system. J. Hydrol. 234: 21–37.
Jang, S., M. Cho and J. Yoon. 2007. Using SWMM as s tool for hydrologic impact assessment. Desalination 212: 344–356.
Jokic, D. and D. Maidment. 2004. Terrain analysis for urban storm water modeling. Hydrological Processes. (5): 115-124.
 Jonathan, P. L and E. V. Baxter. 2012. An assessment of distributed flash flood forecasting accuracy using radar and rain gauge input for a physics-based distributed hydrologic model. J. Hydrol. 412–413, 114–132.
Krupka, M., S. Wallis, S. Pender and S. Neélz. 2007. Some practical aspects of flood inundation modelling, Transport phenomena in hydraulics, Publications of the Institute of Geophysics, Polish Academy of Sciences, E-7 (401): 129–135.
Lagmay, A. M. F., R. P. Agaton, M. A, C. Bahala, J. B. L. Briones, K. M. C. Cabacaba, C. V. C. Caro, L. L. Dasallas, L. A. L. Gonzalo, C. N. Ladiero, J . P. Lapidez, M. T. F. Mungcal, J. V. R. Puno, b, M. M. A. C. Michael Ramos,  J. Santiago, J. K. Suarez and J. P. Tablazon,. 2015. Devastating storm surges of Typhoon Haiyan. I. Journal of Disaster Risk Reduction. 11: 1–12.
Lhomme, J., P. Sayers, B. Gouldby, P. Samuels, M. Wills and J. Mulet-Marti. 2008. Recent Development and Application of a Rapid Flood Spreading Model, River Flow 2008, September. <http://eprints.hrwallingford.co.uk/223/1/HRPP361-Recent_development_and_application_of_a _rapid_flood_spreading_method.pdf>.
Leopold, L. B. 1968. Hydrology for urban land planning. A Guidebook on the Hydrologic Effects of Urban Land Use, U.S. Geol. Circ. 554, USGS, Washinghon, DC. Pp: 16-28.
Liu, A., P. Egodawtta, A. Guan and A. Goonetilleke. 2013. Influnce of rainfall and catchment characteristics on urban stormwater quality. Scince of the Total Enviroment, 444: 255-262.
Maidment, D. 1996. GIS and hydrological modelling: an assessment of progress. In: Third International Conference on GIS and Environmental Modelling, Santa Fe, NM, 20–25 January, 1996.
Mark, O., S. Weesakul, C. A. pirumanekul, S. B. Aroonnet and S. Djordjevic. 2004. Potential and limitations of 1D modeling of urban flooding. J. Hydrol. 35: 159–172.
Mccuen, R.H. 1982. A Guide to Hydrologic Analysis Using SCS Method. Prentice- Hall Inc., Englewood Cliffs, 67–97.
Meesuk, V., Z. Voinovich, A. E. Mynett and A. F. Abdullah. 2015. Urban flood modelling combining top-view LiDAR data with ground-view SfM observations. A. in Water Resources. 75: 105–117.
 Mignot, E., A. Paquier and S. Haider. 2006. Modeling floods in a dense urban area using 2D shallow water equations. J. Hydrol. 327 (1/2), 186–199.
   Miller, D. J., H. Kim, R. T. Kjeldsen, J. Packman, S. Grebby and R. Dearden. 2014. Assessing the impact of urbanization on storm runoff in a peri-urban catchment using historical change in impervious cover.  Journal of Hydrology, 515: 59–70.
Naulin, J.-P., O. Payrastre and E. Gaume. 2014. Spatially distributed flood forecasting in flash flood prone areas: Application to road network supervision in Southern France. J. Hydrol. 486: 88–99.
Pradeep, K. B., J. A. Barry and Y. L. James. 2006. Runoff quality analysis of urban catchments with analytical probabilistic models. J. Water Resour. Plann. Manage. 132 (1), 4–14.
Qiu, J.W., N. Li and X.T. Cheng. 2000. The simulation system for heavy rainfall in Tianjin City. J. Hydraulic Eng. 11: 34–42.
 Reuterwall, L, and Thoren. 2009. Identification of flood risk area in an open storm water system whit MIKE URBAN- senia town, Malaysia, Msc. Thesis, water and Enviroment Engineering, Department of Chemical Enginereeng, Land University, 90pp.
 Rossman, L. A. 2004. Storm water management model: User’s manual Version5.0 [EB/OL]. <http://www.epa.gov/ednnrmrl/models/swmm/ epaswmm5_user_manual .pdf>.
Schubert, J. E., B. F. Sanders, M. J. Smith and N. G. Wright. 2008. Unstructured mesh generation and landcover-based resistance for hydrodynamic modeling of urban flooding. Adv. Water Resour. 31: 1603–1621.
Schumann, G. J., J. C. Neal, D. C. Mason and P. D. Bates. 2011. The accuracy of sequential aerial photography and SAR data for observing urban flood dynamics, a case study of the UK summer 2007 floods. Remote Sens. Environ. 115: 2536–2546.
Sharifian, R. A., A. Roshan, m. Afalatoni, A. Jahadi and M. Zolghadr. 2010. Uncertainty and sensitivity analysis of SWMM model in computation of manhole water depth and sub catchment peak flood. J. procedia social and bihavioral scinces. 2: 7739-7740.
 Smith, M.B. 2006. Comment on ‘Analysis and modeling of flooding in urban drainage systems’. J. Hydrol. 317: 355–363.
 Wei, O.Y., B. B. Guo and F.H. Hao. 2012. Modeling urban storm rainfall runoff from diverse underlying surfaces and application for control design in Beijing. J. Environ. Manage. 113: 467–473.
Woodward, D. E., R. H. Hawkins, R. Jiang, A. T. Hjelmfelt, J. A Van Mullem and Q. D. Quan. 2003. Runoff curve number method: examination of the initial abstraction Ratio. In: Proc. ASCE Conf. Proc., Philadelphia, PA, vol. 118: p. 308.
Xie, Y. Y., D. M. Li and P. Y. Li. 2005. Research and application of the mathematical model for urban rainstorm water logging. Adv. Water Sci. 16 (3): 384–390.
Yan, J., Y. Zhang, J. Zhang and X. Yang. 2011. The method of urban rain- flood utilization based on environmental protection. Energy procedia. 5: 403-407.
Zhang, S. H and B. A. Pan. 2014. An urban storm-inundation simulation method based on GIS. J. Hydrol. 515: 260–268.
Zhang, S.H., T. W. Wang and B. H. Zhao. 2014a. Calculation and visualization of flood inundation based on a topographic triangle network. J. Hydrol. 509: 406–415.
Zhang, S.H., B. H. Zhao and D. E. Eho. 2014b. Watershed characteristics extraction and subsequent terrain analysis based on digital elevation model in flat region. J. Hydrol. Eng.
Zhao, D. Q., J. N. Chen and Q. Y. Tong. 2008. Construction of SWMM urban drainage network model based on GIS. China Water Wastewater 24 (7): 88–91